• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (10): 1957-1967.DOI: 10.3973/j.issn.2096-4498.2025.10.014

• 监控与维护 • 上一篇    下一篇

基于InSAR技术的滑坡变形规律识别及其穿越隧道的力学响应

贾蓉蓉1, 高孟亮2, *   

  1. (1. 山西省交通运输安全应急保障技术中心(有限公司), 山西 太原 030000; 2. 山西省交通科技研发有限公司, 山西 太原 030032)
  • 出版日期:2025-10-20 发布日期:2025-10-20
  • 作者简介:贾蓉蓉(1979—),女,山西原平人,2007年毕业于长安大学,工程管理专业,本科,高级工程师,现从事交通运输工程研究工作。E-mail: 1289849694@qq.com。*通信作者: 高孟亮, E-mail: gao_mengliang@163.com。

Identification of Landslide Deformation Patterns Based on InSAR Technology and Mechanical Response of Tunnels Crossing Landslide Zones

JIA Rongrong1, GAO Mengliang2, *   

  1. (1. Shanxi Transportation Safety Emergency Guarantee Technology Center (Co., Ltd.), Taiyuan 030000, Shanxi, China; 2. Shanxi Transportation Technology Research & Development Co., Ltd., Taiyuan 030032, Shanxi, China)
  • Online:2025-10-20 Published:2025-10-20

摘要: 为揭示滑坡-隧道正交体系的变形规律与受力特征,以某高速公路隧道穿越滑坡为研究对象,引入InSAR技术反演监测滑坡表面形变,并结合现场GNSS观测结果进行对比验证; 同时,通过数值模拟方法分析滑坡作用下隧道结构的应力应变响应特征,并基于传递系数法对考虑滑坡推力的隧道围岩压力进行简化计算。结果表明: 1)InSAR监测与GNSS观测结果在变形趋势和幅值上具有较高一致性,4个监测点的相关系数均在0.96以上,显示InSAR能够可靠反映区域尺度的整体变形分布; 2)数值模拟揭示坡脚与后缘为变形集中的关键部位,最大位移达4.08 cm,剪应力集中在隧道边墙附近,隧道右侧水平位移为2.06 cm,较左侧大0.47 cm,拱部竖向压应力峰值为2.74 MPa,表明隧道结构存在显著的不均匀受力与衬砌开裂特征; 3)隧道围岩压力分布呈梯形偏压特征,靠近滑坡一侧边墙与拱部的最大压力分别为1.03 MPa和3.19 MPa,显著高于对向区域,导致结构受力失衡; 4)在正交体系条件下,滑坡蠕动推力的非对称作用容易引发隧道衬砌纵向裂缝、边墙倾斜及底鼓等典型病害。

关键词: 滑坡-隧道体系, InSAR技术, 数值模拟, 围岩压力, 变形

Abstract: The authors investigate the deformation and mechanical characteristics of a landslide-tunnel orthogonal system by examining a highway tunnel that crosses a landslide. InSAR technology is utilized to measure slope surface deformation, which is validated against GNSS monitoring data. Numerical simulations are conducted to analyze the stress-strain response of the tunnel under landslide loading. A simplified calculation of surrounding rock pressure is performed using the transfer coefficient method, considering landslide thrust. The results reveal the following: (1) InSAR monitoring results are highly consistent with GNSS observations, with correlation coefficients all exceeding 0.96 at four monitoring points, confirming the reliability of InSAR in capturing large-scale landslide deformation. (2) Numerical simulations show that deformation is concentrated at the slope toe and rear, with a maximum displacement of 4.08 cm. Peak shear stress is observed around the tunnel sidewalls, where the right sidewall displacement reaches 2.06 cm, which is 0.47 cm greater than that of the left, and the crown experiences a vertical compressive stress peak of 2.74 MPa, indicating pronounced asymmetric loading and potential lining cracking. (3) The surrounding rock pressure exhibits a trapezoidal asymmetric distribution, with maximum values of 1.03 and 3.19 MPa at the sidewall and the crown on the landslide side, respectively, both significantly higher than those on the opposite side, resulting in structural stress imbalances. (4) Under orthogonal conditions, the asymmetric thrust of landslide creep can readily induce longitudinal cracks, sidewall tilting, and floor heave in the tunnel lining.

Key words: landslide-tunnel system, InSAR technology, numerical simulation, surrounding rock pressure, deformation