• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 168-182.DOI: 10.3973/j.issn.2096-4498.2026.01.014

• 施工技术 • 上一篇    下一篇

高海拔隧道衬砌收缩约束开裂机理及防开裂优化措施

王帅帅1, 仇文革2, 3, 史经峰1, 徐勇1, 孙向东1, 王永仕1, 陈昊喆3, *, 段东亚3   

  1. (1. 中交第二公路工程局有限公司, 陕西 西安 710065; 2. 西南交通大学 极端环境岩土和隧道工程智能建养全国重点实验室, 四川 成都 610031; 3. 成都天佑智隧科技有限公司, 四川 成都 610031)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:王帅帅(1988—),男,安徽宿州人,2017年毕业于西南交通大学,桥梁与隧道工程专业,博士,高级工程师,现从事隧道施工技术管理与研究工作。E-mail: 563807055@qq.com。*通信作者: 陈昊喆, E-mail: lzyaa1529@163.com。

Shrinkage Restraint Cracking Mechanism and Anticracking Optimization Measures for Lining of High-Altitude Tunnels

WANG Shuaishuai1, QIU Wenge2, 3, SHI Jingfeng1, XU Yong1, SUN Xiangdong1, WANG Yongshi1, CHEN Haozhe3, *, DUAN Dongya3   

  1. (1. CCCC Second Highway Engineering Co., Ltd., Xi′an 710065, Shaanxi, China; 2. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. Chengdu Tianyou Tunnelkey Co., Ltd., Chengdu 610031, Sichuan, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为解决高海拔铁路隧道衬砌结构早期环向开裂问题,以某高原深埋铁路隧道为研究对象,通过病害踏勘明确衬砌裂缝的空间分布与扩展规律。基于“地基上长墙”温度应力理论,采用扩展有限元法,建立精细化衬砌钢筋-混凝土计算模型,模拟矮边墙约束下拱墙的温度场与收缩应力场。模拟结果显示: 衬砌墙脚混凝土内外最大温差达到19.95 ℃,衬砌拱墙中部收缩位移仅为其两端最大收缩位移的0.12%; 矮边墙约束效应导致其与拱墙结合处出现应力集中,收缩约束应力最大值为2.35 MPa,已超出C35混凝土抗拉强度; 矮边墙与拱墙结合位置存在“收缩位移抑制-约束应力集中”效应。模拟裂缝的开裂位置、时间、路径、长度与现场观测结果基本吻合,验证了拱墙收缩与矮边墙约束的协同作用是衬砌开裂的主导机制。据此,提出“三低一高型”及“抗裂型”混凝土配合比防开裂优化措施并进行试验。试验结果表明: 1)温降阶段,“抗裂型”试件收缩应变较常规、“三低一高型”分别降低31.1%、28.7%; 2)现场应用证明,“抗裂型”配合比使温升阶段墙脚最大内外温差降低50.3%,温降阶段使其收缩应变降幅达到65%。通过“温控与收缩补偿协同控制”机制,可有效缓解拱墙与矮边墙接触位置的应力集中,提高衬砌结合部位的抗裂性能。

关键词: 高海拔隧道, 深埋铁路隧道, 环向开裂, 收缩约束, 配合比优化, 抗裂混凝土, 数值模拟

Abstract: Lining structures of high-altitude railway tunnels are prone to early circumferential cracking. To address this problem, a case study is conducted on a deep railway tunnel located in a plateau region. The spatial distribution and propagation characteristics of lining cracks are identified through defect surveying. Based on the "long wall on foundation" temperature stress theory, an extended finite element method is employed to establish a refined reinforced concrete lining model to simulate the temperature field and shrinkage stress field of the arch wall under the constraint of the low sidewall. The simulation results show that the maximum temperature difference between the inner and outer sides of the concrete at the lining wall foot reaches 19.95 ℃, and the shrinkage displacement at the midspan of the lining arch wall is only 0.12% of the maximum shrinkage displacement at both ends. The restraint effect of the low sidewall induces stress concentration at the junction between the low sidewall and the arch wall, where the maximum shrinkage restraint stress reaches 2.35 MPa, exceeding the tensile strength of C35 concrete. A "shrinkage displacement suppressionconstraint stress concentration" effect is thus revealed at the junction of the low sidewall and the arch wall. The simulated crack location, initiation time, propagation path, and crack length are in good agreement with field observations, confirming that the coupled effect of arch wall shrinkage and low sidewall restraint is the dominant mechanism governing lining cracking. Accordingly, anticracking optimization measures based on the concepts of "three low and one high" and a "crack-resistant" concrete mix proportion are proposed. Test results show that: (1) during the temperature drop stage, the shrinkage strain of the "crack-resistant" specimen is reduced by 31.1% and 28.7% compared with that of the conventional "three low and one high" specimen; (2) field application demonstrates that the "crack-resistant" mix proportion reduces the maximum temperature difference between the inner and outer sides of the wall foot by 50.3% during the temperature rise stage, and decreases the shrinkage strain by 65% during the temperature drop stage. These results indicate that a coordinated control mechanism combining temperature regulation and shrinkage compensation can effectively alleviate stress concentration at the interface between the arch wall and the low sidewall, thereby improving the crack resistance of the lining joint.

Key words: high-altitude tunnel, deep railway tunnel, circumferential cracking, shrinkage constraint, optimization of mixing ratios, crack-resistant concrete, numerical simulation