• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 249-257.DOI: 10.3973/j.issn.2096-4498.2025.S2.022

• 研究与探索 • 上一篇    下一篇

压入式通风风管漏风对隧道CO扩散特性的影响

崔善坤1, 2, 孙三祥1, 2, *, 郑旭廷1, 2, 李雷3   

  1. (1. 兰州交通大学环境与市政工程学院, 甘肃 兰州 730070; 2. 寒旱地区水资源综合利用教育部工程研究中心, 甘肃 兰州 730070; 3. 中铁第一勘察设计院集团有限公司, 陕西 西安 710043)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:崔善坤(2001—),男,山东济南人,兰州交通大学供热、供燃气、通风及空调工程专业在读硕士,研究方向为隧道通风。E-mail: 1792350240@qq.com。 *通信作者: 孙三祥, E-mail: sunsanxiang@mail.lzjtu.cn。

Impact of Leakage in Pressurized Ventilation Ducts on Diffusion of CO Concentration in Tunnels

CUI Shankun1, 2, SUN Sanxiang1, 2, *, ZHENG Xuting1, 2, LI Lei3   

  1. (1. School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2. Engineering Research Center of Comprehensive Utilization of Water Resources in Cold and Arid Regions, the Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 3. China Railway First Survey and Design Institute Group Co., Ltd., Xi′an 710043, Shaanxi, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为探究钻爆法施工隧道压入式通风风管漏风时CO扩散分布规律,以实际工程为例,基于CFD数值模拟软件,采用RNG κ-ε湍流模型,以漏风孔面积、数量及位置作为关键因素,模拟分析爆破后不同风管漏风工况下隧道内流速场及CO扩散分布。研究结果表明: 1)随着漏风孔面积增大,漩涡对回流扰动的强度显著增强;送风风流动能和压力沿程逐步降低,导致风管内外的压差减小,距掌子面越近的漏风孔漏风量越小。2)风管漏风孔抑制了CO在隧道顶部的聚集,在漏风处因漩涡作用形成局部CO积聚区,不利于CO的排出。3)漏风孔面积越大、数量越多,CO扩散上移的抑制作用越强、质量分数扩散速率减缓。4)当漏风孔位置沿风管面上移时,漏风风流逐渐向侧方偏移,CO向隧道拱腰方向运移,人体呼吸高度处CO达标时间延长。5)基于多工况模拟数据,建立的风管漏风孔影响下的通风时间修正模型符合多元二次回归模型,为风管存在漏风孔时修正通风时间提供了理论依据。

关键词: 隧道施工, 通风, 漏风, CO质量分数, 数值模拟

Abstract: To explore CO diffusion patterns under duct leakage during press-in ventilation in drill-and-blast tunnels, a case study is conducted using computational fluid dynamics simulations with the κ-ε turbulence model. Leakage hole area, number, and position are taken as key variables to simulate and analyze the airflow and CO distribution under various leakage scenarios after blasting. Results show that: (1) Larger leakage areas intensify vortex-induced backflow, while decreased airflow energy and pressure reduce leakage near the tunnel face. (2) Leakage inhibits CO accumulation at the tunnel ceiling but causes local CO buildup near leakage points. (3) Increased area and number of leakage holes suppress upward CO diffusion and slow its spread. (4) Upward-shifted holes divert airflow sideways, pushing CO toward the tunnel shoulders and delaying clearance at breathing height. (5) A multivariate quadratic regression model is developed to correct ventilation time under leakage conditions, providing a theoretical basis for ventilation adjustment.

Key words: tunnel construction, ventilation, air leakage, CO mass fraction, numerical simulation