• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (12): 2077-2088.DOI: 10.3973/j.issn.2096-4498.2023.12.010

• 研究与探索 • 上一篇    下一篇

双圆盾构隧道结构纵向等效抗弯刚度解析解

章源1, 梁荣柱1, *, 李忠超2, 王舒敏1, 吴文兵1, 范默涵1, 蒋熙1   

  1. (1. 中国地质大学(武汉)工程学院, 湖北 武汉 430074;  2. 武汉市市政建设集团有限公司, 湖北 武汉 430023)
  • 出版日期:2023-12-20 发布日期:2024-01-04
  • 作者简介:章源(2002—),男,江苏苏州人,中国地质大学(武汉)地质工程专业在读学士,研究方向为盾构隧道结构保护。Email: zhangyuan020430@163.com。*通信作者: 梁荣柱, Email: liangcug@163.com。

Analytical Solution for Longitudinal Equivalent Bending Stiffness of DoubleOTube Shield Tunnel Structure

ZHANG Yuan1, LIANG Rongzhu1, *, LI Zhongchao2, WANG Shumin1, WU Wenbing1, FAN Mohan1, JIANG Xi1   

  1. (1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, Hubei, China;  2. Wuhan Municipal Construction Group Co., Ltd., Wuhan 430023, Hubei, China)
  • Online:2023-12-20 Published:2024-01-04

摘要:

在邻近施工的作用下,双圆盾构隧道会发生纵向不均匀位移; 而双圆盾构隧道的纵向等效抗弯刚度是表征其纵向抗弯性能的重要力学参数,也是预测外部荷载作用下双圆盾构隧道纵向变形的关键参数。为保障双圆盾构隧道结构安全,对双圆盾构隧道的纵向受力变形进行预测。基于纵向等效连续化模型,考虑螺栓预紧力的作用和环缝影响范围的影响,推导得到双圆盾构隧道的纵向等效抗弯刚度解析解。结合双圆盾构隧道截面的特点,分别考虑中性轴位于上部边缘、上部双拱、腰部和下部双拱的4种情况,并给出界限弯矩表达式。以国内首条双圆盾构隧道为例,分析弯矩、螺栓预紧力和环缝影响范围对双圆盾构隧道纵向抗弯性能的影响。研究表明: 1)当存在螺栓预紧力时,纵向等效抗弯刚度随着外部弯矩增加而呈现“反S”形态下降,并最终趋于无预紧力条件下的隧道纵向等效抗弯刚度值。2)中性轴位置亦非固定位置,随着外部弯矩增加,中性轴逐渐下移;且当外部弯矩小于环缝启动弯矩时,隧道的纵向抗弯刚度与均质隧道抗弯刚度一致。3)当环缝长度影响系数小于1时,中性轴位置始终保持不变,但纵向等效抗弯刚度有效率随着环缝作用区系数增大而迅速下降;当环缝长度影响系数大于1时,中性轴上移,管片受压范围增大,随着环缝作用区系数增大,纵向等效抗弯刚度有效率值缓慢减小并趋于一个定值。4)增大螺栓预紧力,环缝张开启动弯矩随之增大,隧道的抗弯刚度衰减更慢,同时中性轴位置上移,管片受压范围扩大。

关键词: 双圆盾构隧道, 纵向等效抗弯刚度, 环缝影响范围, 解析解, 螺栓预紧力, 纵向等效抗弯刚度有效率

Abstract:  The doubleOtube(DOT) shield tunnel may undergo longitudinal uneven displacement due to adjacent constructions. The longitudinal equivalent bending stiffness(LEBS) stands as a pivotal mechanical parameter, delineating the longitudinal bending performance of the tunnel and forecasting its deformation in response to external loads. To ensure the safety of the DOT shield tunnel structure and predict its longitudinal stress and deformation, the analytical solution for the LEBS is deduced based on the longitudinal equivalent continuous model. This model considers the pretightening force of the bolts and the influential range of the circumferential seam. In addition, expressions for boundary bending moments are provided under conditions where the neutral axis is located at the upper edge, upper double arch, waist, and lower double arch. A case study on the first DOT shield tunnel in China is conducted to analyze the effects of the bending moment, pretightening force of bolts, and influential range of the circumferential seam on longitudinal bending performance. Key findings include: (1) Under the pretightening force of bolts, the LEBS decreases in a "reverse S" shape with increasing external bending moment, ultimately approaching that without pretightening force. (2) The neutral axis position varies and gradually moves downward with increasing bending moment. When the external bending moment is smaller than the activating bending moment of the circumferential seam, the LEBS aligns with that of a homogeneous tunnel. (3) The neutral axis position remains unchanged for an influential coefficient of the circumferential seam length less than 1. Still, the efficiency of the LEBS rapidly decreases with an increasing coefficient of the circumferential seam action zone. When the influential coefficient is greater than 1, the neutral axis moves upward, and the compression range of the segmental ring increases. However, the efficiency of the LEBS slowly decreases and tends toward a certain value with an increasing coefficient of the circumferential seam action zone. (4) Increasing the pretightening force of bolts raises the activating bending moment of the circumferential seam, leading to a slower decay in the LEBS of the tunnel. Simultaneously, the neutral axis position continuously moves upward, and the compression range of the segmental ring further expands.

Key words: doubleOtube shield tunnel, longitudinal equivalent bending stiffness, circumferential seam influential range, analytical solution, pretightening force of bolts; efficiency of longitudinal equivalent bending stiffness