• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (6): 1127-1144.DOI: 10.3973/j.issn.2096-4498.2024.06.001

• 专家论坛 • 上一篇    下一篇

Review of Design and Calculation Methods for Minimum Overburden Thickness of Shield Tunnels in Water-Rich Environment(富水环境下盾构隧道最小覆盖层厚度设计与计算方法综述)

刘汉龙1,2,3, 姜佳奇1, 刘智成4, 仉文岗1,2,3,*, 孙伟鑫1, 杨文钰1, 刘冒佚5, 吴岱峰5, 储亮5, 张涛5   

  1. (1. 重庆大学土木工程学院, 重庆 400045 2. 重庆大学 山地城镇建设与新技术教育部重点实验室,重庆 400045;3. 重庆大学 库区环境地质灾害国家地方联合研究中心, 重庆 400045;4. 广州地铁集团有限公司, 广东 广州 510220;5. 重庆城投基础设施建设有限公司, 重庆 400045)

  • 出版日期:2024-06-20 发布日期:2024-07-12
  • 作者简介:刘汉龙(1964—),男,江苏高邮人,1994年毕业于河海大学,岩土工程专业,博士,教授,中国工程院院士,现从事桩基工程及软弱地基加固等方面的教学与研究工作。E-mail: hliuhhu@163.com。

Review of Design and Calculation Methods for Minimum Overburden Thickness of Shield Tunnels in Water-Rich Environment

LIU Hanlong1, 2, 3, JIANG Jiaqi1, LIU Zhicheng4, ZHANG Wengang1, 2, 3, *, SUN Weixin1, YANG Wenyu1, LIU Maoyi5, WU Daifeng5, CHU Liang5, ZHANG Tao5   

  1. (1. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China; 3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing 400045, China; 4. Guangzhou Metro Group Co., Ltd., Guangzhou 510220, Guangdong, China; 5. Chongqing Urban Investment Infrastructure Construction Co., Ltd., Chongqing 400045, China)

  • Online:2024-06-20 Published:2024-07-12

摘要: 覆盖层厚度设计是建设水下盾构隧道的关键环节之一。覆盖层厚度过小,围岩在施工扰动下易发生失稳,引起塌方、突水等灾害;覆盖层厚度过大,则会对工程预算与工期提出更高的要求。通过文献调研,结合已有实际水下盾构隧道工程案例,对现有合理覆盖层厚度设计和计算方法进行研究与总结。得出: 1)水下盾构隧道设计方法主要分为理论分析法和数值模拟法; 2)根据隧道结构稳定分析侧重点不同,理论分析法可分为考虑抗浮稳定性设计方法和考虑掌子面稳定性设计方法; 3)现阶段水下盾构隧道合理覆盖层厚度的设计方法多基于数值模拟和理论分析,对实际工程工况进行一定程度的简化,且未能全面考虑复杂建(构)筑物环境、施工工艺以及隧道自身结构特性的影响,覆盖层厚度的研究深度和设计方法的适用性仍需进一步提高; 4)目前,富水环境下盾构隧道最小覆盖层厚度的研究内容已较为丰富,但与实际工程的结合较为困难。未来的研究应进一步考虑施工的经济性、施工流程、复杂环境条件、结构寿命及智慧建造平台等方面。

关键词: 水下盾构隧道, 合理覆盖层厚度, 抗浮稳定性, 掌子面稳定性, 设计方法

Abstract: One of the key aspects of the construction of underwater shield tunnels lies in the design of the overburden thickness. A substantially small thickness of the overburden layer increases the instability tendency of surrounding rocks under construction disturbance, causing disasters such as collapse and water inrush. By contrast, an excessively large thickness will necessitate higher requirements for the project budget and construction period. The authors, supplemented with a comprehensive review of literature and insights from real world underwater tunnel engineering cases, systematically study and review the current rational design and calculation methodologies for overburden thickness. The content is crucial in ensuring the safety and stability of the underwater shield tunnel structure and smooth progress of the project, which can provide a reference for follow-up research and engineering practice. Several key findings are as follows: (1) Theoretical analysis and numerical simulation methods are included in the design methodologies for underwater shield tunnels. (2) Theoretical analysis methods are divided based on the focus of stability analysis, differentiating between those accounting for antifloating and tunnel face stability. (3) Current design methodologies for reasonable overburden thickness in underwater shield tunnels primarily rely on numerical simulation and theoretical analysis. However, these approaches oversimply actual engineering conditions, disregarding the nuanced influence of complex building environments, construction technology, and the intrinsic structural characteristics of the tunnel. Consequently, the research depth of overburden thickness and the applicability of design methodologies can be improved by conducting further research. (4) Currently available research on the minimum overburden thickness of shield tunnels in water-rich environments has been abundant, but its integration with the actual engineering is difficult. Overall, the aspects of construction economy, construction process, complex environmental impact, structural life, and intelligent construction platform should be further considered in future research.

Key words: underwater shield tunnel; reasonable overburden thickness, antifloating stability, tunnel face stability; design methods