• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (S1): 179-186.DOI: 10.3973/j.issn.2096-4498.2024.S1.019

• 研究与探索 • 上一篇    下一篇

干湿循环硫酸盐侵蚀粉煤灰混凝土耐久性分析及抗蚀等级预测

郑涛1, 祝鹏程2 *, 普如敏1, 杜艳斌3, 李敏辉1, 刘新荣2, 4, 5   

  1. 1. 云南云岭高原山区公路工程检测有限公司, 云南 昆明 650032 2. 重庆大学土木工程学院, 重庆 400045;3. 云南云岭路面工程有限公司, 云南 昆明 650032; 4. 库区环境地质灾害防治国家地方联合工程研究中心, 重庆 400045; 5. 山地城镇建设与新技术教育部重点实验室, 重庆 400045)

  • 出版日期:2024-08-20 发布日期:2024-09-02
  • 作者简介:郑涛(1977—),女,云南弥渡人,2004年毕业于重庆交通学院,道路与桥梁工程专业,本科,高级工程师,主要从事高速公路路用材料的检测及运用与项目管理工作。E-mail: 445332409@qq.com。*通信作者: 祝鹏程, E-mail: pczhu123@163.com。

Durability Analysis of Fly Ash Concrete Under Dry-Wet Cycle Sulfate Erosion and Prediction of Anticorrosion Grade

ZHENG Tao1, ZHU Pengcheng2, *, PU Rumin1, DU Yanbin3, LI Minhui1, LIU Xinrong2, 4, 5   

  1. (1. Yunnan Yunling Plateau Mountain Highway Engineering Testing Co., Ltd., Kunming 650032, Yunnan, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. Yunnan Yunling Road Engineering Co., Ltd., Kunming 650032, Yunnan, China; 4. National Joint Engineering Research Center for Prevention and Control of Environmental Geological Hazards in the TGR Area, Chongqing 400045, China; 5. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 400045, China)

  • Online:2024-08-20 Published:2024-09-02

摘要: 针对云南楚雄州地区含盐地质环境及公路隧道衬砌混凝土所面临的耐久性问题,探究粉煤灰对混凝土抗硫酸盐侵蚀性能的影响,采用干湿循环和硫酸盐侵蚀耦合的试验方法,根据混凝土表观形貌与质量损失率分析其劣化机制,并建立基于Weibull函数的混凝土侵蚀损伤模型与试验结果进行对比。结果表明: 1)侵蚀初期钙矾石和石膏填充于孔隙之间,试件质量增加; 侵蚀后期,侵蚀产物膨胀应力超过混凝土结构内应力时,裂缝开始形成和扩展,混凝土受损严重,试件质量减小。2)适量粉煤灰提升了混凝土的抗蚀等级,其中以掺入20%粉煤灰提升效果最优; 当粉煤灰掺入过量(25%)时,混凝土抗蚀等级下降。3)以耐蚀系数为损伤度建立Weibull分布函数抗蚀等级预测模型,能够较好地反映粉煤灰混凝土受侵蚀损伤劣化规律,各组模型相关度R2均在0.95以上,模型预测与试验数据误差率在15%以内,精度较高。

关键词: 隧道, 粉煤灰混凝土, 干湿循环, 硫酸盐侵蚀, 耐久性, Weibull分布, 抗蚀等级

Abstract: To address the durability challenges faced by concrete linings in highway tunnels in the salt-containing geological environment of Chuxiong Prefecture, Yunnan Province, China, the authors investigate the influence of fly ash on the resistance of concrete to sulfate erosion. Experimental methods coupling dry-wet cycles with sulfate erosion are employed. The deterioration mechanism is analyzed based on the surface morphology and mass loss rate of concrete. Additionally, a concrete erosion damage model based on the Weibull function is established and compared with experimental results. The results indicate the following: (1) In the initial stages of erosion, ettringite and gypsum fill the voids, leading to an increase in specimen mass. (2) In the later stages of erosion, when the expansion stress of erosion products exceeds the internal stress of the concrete structure, cracks appear and propagate, resulting in severe damage to the concrete and a decrease in specimen mass. The addition of an appropriate amount of fly ash enhances the anticorrosion grade of concrete, with the most optimal improvement observed when 20% fly ash is added. However, when fly ash is added excessively (25%), the anticorrosion grade of concrete decreases. (3) The predictive model for anticorrosion grade based on the Weibull distribution function using the erosion coefficient as damage severity effectively reflects the degradation pattern of fly ash concrete under erosion. The correlation coefficients R2 of all model sets are above 0.95, with prediction errors relative to experimental data within 15%, indicating high precision.

Key words: tunnel, fly ash concrete, dry-wet cycle, sulfate erosion, durability, Weibull distribution, anticorrosion grade