• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2205-2216.DOI: 10.3973/j.issn.2096-4498.2025.12.002

• 研究与探索 • 上一篇    下一篇

带箍筋型钢混凝土隧道支护小偏心受压性能试验

路军富1, 陈卓1, 王明胜1, 2, 李旻昊1, 王奎1, 李牧雨1   

  1. (1. 地质灾害防治与地质环境保护全国重点实验室(成都理工大学), 四川 成都 610059;2. 中铁城市发展投资集团有限公司, 四川 成都 610000)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:路军富(1978—),男,河南新乡人,2010年毕业于西南交通大学,桥梁与隧道工程专业,博士,教授,主要从事隧道及地下工程方面的研究与教学工作。E-mail: lujunfu@126.com。

Experimental Study on Bearing Mechanism and Failure Mode of Steel-Reinforced Concrete Tunnel Support Structures With Stirrups Under Small Eccentric Compression

LU Junfu1, CHEN Zhuo1, WANG Mingsheng1, 2, LI Minhao1, WANG Kui1, LI Muyu1   

  1. (1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 2. China Railway City Development and Investment Group Co., Ltd., Chengdu 610000, Sichuan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 针对不良地质条件下隧道型钢混凝土初期支护易变形破坏的问题,提出在型钢拱架上增设栓钉剪力件(简称栓钉)和箍筋的组合支护结构,通过开展自然黏结、腹板布置栓钉、腹板同时布置栓钉和箍筋3种工况的小偏心受压试验,分析结构的变形破坏特征与承载性能,并推导极限承载力理论计算公式。研究表明: 1)自然黏结工况结构混凝土易剥落、型钢易扭曲变形,与实际隧道支护破坏模式较一致。2)相比自然黏结结构,仅布置栓钉结构与同时布置箍筋和栓钉结构的承载力分别提高18.99%和31.55%,延性系数分别提高26.79%和46.41%,侧向挠度分别减小11.21%和37.72%; 当型钢腹板同时布置栓钉和箍筋时,增强了混凝土与型钢接触截面的抗剪强度,箍筋约束核心混凝土阻止混凝土剥落,使结构的承载力、延性和抗变形能力显著提升,且加载至极限承载力时型钢混凝土组合结构仍能满足平截面假定,而自然黏结工况和仅布设栓钉工况分别在60%和80%极限承载力时已无法满足平截面假定。3)基于平截面假定,建立型钢混凝土组合结构小偏心受压极限承载力理论计算公式,计算结果与试验结果误差控制在5%以内。

关键词: 隧道支护, 型钢混凝土组合结构, 箍筋约束, 小偏心受压, 平截面假定, 极限承载力

Abstract: The primary supports of steel-reinforced concrete tunnels often experience deformation and failure due to adverse geological conditions. To mitigate this problem, studs and stirrups are incorporated into the steel arch frame, creating a composite support structure. Small eccentric compression tests under three conditions are conducted: natural bonding, studs on the web, and studs with stirrups on the web. The tests analyze the deformation and failure characteristics as well as the bearing capacity of the structure, leading to the derivation of a theoretical calculation formula for ultimate bearing capacity. The results show that: (1) Under the natural bonding condition, the concrete spalls and the steel twists and deforms, consistent with that observed under the actual tunnel support failure mode. (2) The addition of studs and stirrups on the steel web enhances the shear strength at the interface between the concrete and steel. The stirrups effectively constrain the core concrete, preventing spalling and improving the overall bearing capacity, ductility, and deformation resistance of the structure. Compared to the natural bonding condition, the structures with studs and with both stirrups and studs show increases in bearing capacity of 18.99% and 31.55%, respectively. In addition, the ductility coefficients increase by 26.79% and 46.41%, respectively, and lateral deflection decreases by 11.21% and 37.72%, respectively. Throughout the tests, the structure with stirrups and studs adhered to the assumption of a plane section, whereas the structure under natural bonding and that with studs failed to meet this assumption at 60% and 80% of the ultimate load, respectively. (3) Based on the plane section assumption, a theoretical formula for steel-reinforced concrete composite structures under small eccentric compression is proposed, with discrepancies between calculations and experimental results remaining within 5%, thus providing a theoretical foundation for optimizing tunnel support design.

Key words: tunnel support, steel-reinforced concrete structure, stirrup constraint, small eccentric compression, plane section assumption, ultimate bearing capacity