• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2228-2239.DOI: 10.3973/j.issn.2096-4498.2025.12.004

• 研究与探索 • 上一篇    下一篇

Critical Wind Speed of Somke in Case of Fires Under Water Mist in Spiral Tunnels(细水雾作用下螺旋隧道火灾烟气临界风速研究)

王建1, 陈勇良1, 赵灵吟1, 王雪2, 3, *, 于丽2, 3, 刘媛2, 3, 李俊麒2, 3, 刘柯逸2, 3, 游赞2, 3   

  1. (1. 中国电建集团成都勘测设计研究院有限公司, 四川 成都 611130; 2. 西南交通大学土木工程学院, 四川 成都 610031; 3. 西南交通大学 极端环境岩土和隧道工程智能建养全国重点实验室, 四川 成都 610031)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:王建(1985—),男,福建福清人,2009 年毕业于河海大学,桥梁与隧道工程专业,硕士,高级工程师,主要从事公路工程设计研究工作。E-mail: 23190651@qq.com。*通信作者: 王雪, E-mail: wangxue7@my.swjtu.edu.cn。

Critical Wind Speed of Somke in Case of Fires Under Water Mist in Spiral Tunnels

WANG Jian1, CHEN Yongliang1, ZHAO Lingyin1, WANG Xue2, 3, *, YU Li2, 3, LIU Yuan2, 3, LI Junqi2, 3, LIU Keyi2, 3, YOU Zan2, 3   

  1. (1. Power China Chengdu Engineering Corporation Limited, Chengdu 611130, Sichuan, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 3. State Key Laboratory of Intelligent Geotechnics and Tunnelling, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 隧道火灾高温烟气逆流不利于火灾时的人员疏散及应急救援,且在螺旋隧道中存在烟气撞壁现象,高温烟气排出困难。烟气控制是隧道火灾预防的关键问题。为解决这一难题,采用数值模拟与理论分析相结合的方法,探究螺旋公路隧道中曲率、坡度与细水雾对临界风速的影响规律。通过研究7种不同曲率、6种坡度、5种细水雾喷头流量以及4种雾化角的工况,得出不同条件下临界风速的变化规律。结果表明: 1)临界风速随曲率减小而增大,随坡度变化而呈现不同趋势,即上坡坡度的增加使临界风速减小,而下坡坡度的增加则使临界风速增大。2)水雾喷头流量对临界风速有显著影响,随着喷头流量的增加,临界风速逐渐降低,且当流量达到一定值后,临界风速的变化幅度逐渐减小。3)细水雾雾化角对临界风速的影响呈现先增后减的趋势,在经济性和效果综合考虑下,最佳雾化角为120°,最佳喷头流量为15 L/min。4)基于细水雾作用下的临界风速变化规律,提出并推导了螺旋公路隧道细水雾作用下的临界风速理论预测模型,揭示了螺旋隧道中临界风速与火灾热释放速率、细水雾吸热量之间的1/3次幂关系。

关键词: 公路隧道, 螺旋隧道, 细水雾, 烟气控制, 火灾, 临界风速, 曲率, 坡度

Abstract: High-temperature smoke reverse flow during tunnel fires hinders personnel evacuation and emergency rescue operations. In spiral tunnels, smoke-wall collision complicates high-temperature smoke discharge. Smoke control remains a key issue in tunnel fire prevention. Therefore, numerical simulations and theoretical analysis are combined to investigate the impact of curvature, slope, and water mist (WM) on critical wind speed in spiral highway tunnels. Seven curvatures, six slopes, five WM nozzle flow rates, and four atomization angles are examined to determine the variation patterns of critical wind speed under various conditions. The results show that: (1) Critical wind speed increases as curvature decreases. Critical wind speed exhibits different trends with varying slopes, where an uphill slope decreases the critical wind speed and a downhill slope increases it. (2) The WM nozzle flow rate substantially affects critical wind speed: as the flow rate increases, critical wind speed gradually decreases, but the rate of change slows once the flow rate reaches a certain value. (3) The atomization angle of the WM has a nonlinear effect on critical wind speed, with an initial increase followed by a decrease. Considering both economic factors and performance, the optimal atomization angle is 120° and the optimal nozzle flow rate is 15 L/min. (4) Based on the observed effects of WM on critical wind speed, a theoretical predictive model for critical wind speed under WM conditions in spiral highway tunnels is proposed. The model reveals a one-third power-law relationship among critical wind speed, fire heat release rate, and WM heat absorption.

Key words: highway tunnel, spiral tunnel, water mist, smoke control, fire, critical speed, curvature, gradient