• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (2): 341-351.DOI: 10.3973/j.issn.2096-4498.2025.02.010

• 研究与探索 • 上一篇    下一篇

高铁隧道内列车气动噪声分布特性仿真研究

李卓明1, 马伟斌1, 2 *, 王子洪1, 2   

  1. (1. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081;2. 高速铁路轨道系统全国重点实验室, 北京 100081)

  • 出版日期:2025-02-20 发布日期:2025-02-20
  • 作者简介:李卓明(1996—),男,河北邯郸人,2024年毕业于同济大学,车辆工程专业,博士,助理研究员,从事高速列车气动噪声研究工作。 E-mail: lizhuoming@tongji.edu.cn。 *通信作者: 马伟斌, E-mail: dwangfei@163.com。

Numerical Simulation of Distribution Characteristics of Aerodynamic Noise of Trains Running in Railway Tunnels

LI Zhuoming1, MA Weibin1, 2*, WANG Zihong1,2   

  1. (1. Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited,Beijing 100081, China; 2. State Key Laboratory of High-speed Railway Track System, Beijing 100081, China)

  • Online:2025-02-20 Published:2025-02-20

摘要: 为明确高速列车产生的气动噪声在隧道内的分布特性,基于大涡模拟和声扰动方程建立隧道环境近场气动噪声数值仿真模型,采用移动壁面法实现固定列车与环境的相对运动,开展不同列车速度单线和双线隧道环境下近场气动噪声数值仿真,数值仿真与现场试验结果具有较好的一致性。数值仿真结果表明: 1)在列车转向架和受电弓等复杂几何结构附近产生显著的非定常涡结构时,会在附近引起较强的湍流压力脉动。2)气动噪声以列车转向架和受电弓等非定常流动较为复杂的结构为核心向四周传播,在靠近列车行驶线路的双线隧道拱脚处气动噪声较高,400 km/h列车速度下低于车顶平面的隧道表面声压级平均值为124.5 dB,比车顶以上的隧道表面高1.5 dB;而在单线隧道中,声压级在隧道空间中以列车为中心展向对称分布,其拱顶和拱脚附近声压级量值相近,均约为129 dB3)不同列车速度下,拱脚和拱腰处测点气动噪声频谱相似,均为200~1 000 Hz频段下的气动噪声声压级较高,且未出现显著峰值噪声; 拱脚处气动噪声高于拱腰处气动噪声,在1 000 Hz以上频段的差别较为明显。

关键词: 高速列车, 隧道, 流场结构, 大涡模拟, 气动噪声

Abstract: To characterize the distribution of aerodynamic noise produced by high-speed trains running in tunnels, a numerical simulation model for near-field aerodynamic noise in tunnel environments is established based on large eddy simulation and the acoustic perturbation equations. The relative motion between stationary trains and the surrounding environment is modeled using the moving wall method. Numerical simulations of near-field aerodynamic noise are conducted for single-and double-track tunnels at different speeds, demonstrating good agreement with field test results. The key findings are as follows: (1) Significant unsteady vortex structures form near complex geometric features such as train bogies and pantographs, leading to strong local turbulent pressure pulsations. (2) Aerodynamic noise propagates outward from these unsteady flow structures. In double-track tunnels, higher aerodynamic noise levels are observed near the haunches close to the train track. At a train speed of 400 km/h, the average sound pressure level (SPL) on the tunnel surface below the train roof is 124.5 dB, which is 1.5 dB higher than that above the train roof. In single-track tunnels, the sound energy is symmetrically distributed around the train, with similar SPL values of approximately 129 dB near the tunnel crown and haunches. (3) At different train speeds, the aerodynamic noise spectra at the haunch and arch foot measurement points exhibit similar characteristics, with higher SPLs in the 200-1 000 Hz frequency range and no distinct noise peaks. The aerodynamic noise at the tunnel arch foot is higher than that at the haunch, with more pronounced differences above 1 000 Hz.

Key words: high-speed train, tunnel, flow structures, large eddy simulation, aerodynamic noise