• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (2): 352-360.DOI: 10.3973/j.issn.2096-4498.2025.02.011

• 研究与探索 • 上一篇    下一篇

超大直径盾构隧道联络通道冻结法施工交界面温度场研究——以北京东六环改造工程冻结联络通道为例

李明1 2 3, 王磊1 2 3, 崔灏1 2 3 *, 陈红蕾2 3, 孙长松4, 杨哲4   

  1. (1. 煤炭科学研究总院, 北京 100013 2. 北京中煤矿山工程有限公司, 北京 100013; 3. 矿山深井建设技术国家工程研究中心, 北京 100013; 4. 中铁十四局集团大盾构工程有限公司, 江苏 南京 211800)

  • 出版日期:2025-02-20 发布日期:2025-02-20
  • 作者简介:李明(1999—),男,山西汾阳人,煤炭科学研究总院桥梁与隧道工程专业在读硕士,研究方向为地下特殊施工冻结法。E-mail: 2447529130@qq.com。*通信作者: 崔灏, E-mail: 63199549@qq.com。

Interface Temperature Field of Freezing Method Construction for a Super-Large Diameter Shield Tunnel Connecting Channel: A Case Study of Beijing East Sixth Ring Renovation Project

LI Ming1, 2, 3, WANG Lei1, 2, 3, CUI Hao1, 2, 3, *, CHEN Honglei2, 3, SUN Changsong4, YANG Zhe4   

  1. (1. China Coal Research Institute, Beijing 100013, China; 2. Beijing China Coal Mine Engineering Company Limited, Beijing 100013, China; 3. National Engineering Research Center of Deep Shaft Construction, Beijing 100013, China; 4. China Railway 14th Corporation Mega Shield Construction Engineering Co., Ltd., Nanjing 211800, Jiangsu, China)

  • Online:2025-02-20 Published:2025-02-20

摘要: 为研究超大直径盾构隧道联络通道冻结法施工中的交界面温度场,以及冻结管非循环段长度等因素对土体与管片交界面冻结壁厚度的影响,以北京东六环超大直径盾构隧道盾构段联络通道冻结施工为背景,采用现场实测和数值模拟的方法,对土体与管片交界面温度场及交界面冻结壁厚度等进行分析。结果表明: 1)冻结过程中冻结管前部的非循环段长度会显著影响交界面处的冻结效果,交界面冻结壁厚度随非循环段长度增加而减小; 在北京东六环工况下,冻结管间距为1 m时,非循环段长度达到450 mm冻结壁无法在56 d内闭合。2)单排管叠加冻结能显著提高交界面的冻结壁厚度及冻结管容许最大非循环段长度,而等管距的环形单圈冻结同直线单排管冻结无明显差距。3)冻结交界面为弧形时,交界面冻结壁厚度较管片为平面时有显著增加; 非循环段长度为300 mm时,上壁厚度比平面管片增加了15%,下壁和侧壁则增加了35%,可以认为管片弧度对交界面冻结有利。4)冻结壁与隧道管片交界面是冻结壁的薄弱位置,在冻结施工中应尽量减小非循环段长度,并重点关注交界面处的温度变化,积极冻结及开挖过程中应对交界面位置做好保温,防止施工过程中交界面位置化冻引起地下水击穿冻结壁,造成涌水涌砂事故。

关键词: 冻结法, 超大直径盾构隧道, 界面温度场, 联络通道, 数值模拟

Abstract: The authors investigate the interface temperature field during the freezing method used for the connecting channel of a super-large diameter shield tunnel. They also examine how the length of the non-circulating section of the freezing pipe affects the thickness of the frozen wall at the interface between the soil and segments. The research focuses on the freezing construction of the connecting channel for the super-large diameter shield tunnel on the East Sixth Ring Road of Beijing, employing both field measurements and numerical simulations to analyze both the temperature field and the thickness of the freezing wall at the soil-pipe segment interface. The results reveal the following: (1) The length of the non-circulating section in front of the freezing pipe significantly affects the freezing effect at the interface. As this length increases, the thickness of the freezing wall at the interface decreases. Under the working conditions of the Beijing East Sixth Ring Road, a non-circulating section length of 450 mm with a freezing pipe span of 1 m results in the inability to achieve a closed freezing wall within 56 d. (2) The thickness of the freezing wall at the interface and the maximum permissible length of the non-circulating section are greatly enhanced through the superposition freezing of a single-row of tube. Notably, a circular single-ring freezing configuration with an equivalent span yields similar results to that of single-row of tube freezing. (3) The thickness of the frozen wall at the interface significantly increases when the frozen interface is curved, compared to when the segment is flat. For a non-circulating segment length of 300 mm, the upper wall thickness increases by 15%, whereas the lower wall and sidewall each increase by 35%. This indicates that segment curvature is beneficial for freezing at the interface. (4) The interface between the frozen wall and tunnel segment represents a weak point in the frozen wall structure. During the freezing construction process, efforts should be made to minimize the length of the non-circulating section, and careful attention should be given to temperature fluctuations at the interface. Active thermal insulation measures should be implemented during freezing and excavation to prevent groundwater from penetrating the frozen wall, thereby avoiding potential water and sand gushing incidents due to defreezing at the interface during construction.

Key words: freezing method, super-large diameter shield tunnel, interface temperature field, connecting channel, numerical simulation