• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (5): 992-1000.DOI: 10.3973/j.issn.2096-4498.2025.05.014

• 施工技术 • 上一篇    下一篇

隧道穿越煤矿采空区帷幕注浆圈堵瓦斯技术——以华蓥山隧道工程为例

刘磊1, 郝生炜2, 黄飞1, 3, *, 罗太友4, 罗亚飞1, 3, 钟小凤1, 龙其毕1, 谭钢5   

  1. 1. 湖南科技大学资源环境与安全工程学院, 湖南 湘潭 411201 2. 中交二公局萌兴工程有限公司,陕西 西安 710119; 3. 湖南科技大学 南方煤矿瓦斯与顶板灾害预防控制安全生产重点实验室,湖南 湘潭 411201; 4. 贵阳景烁安全科技有限公司, 贵州 贵阳 550081;5. 中铁二院成都勘察设计研究院有限责任公司, 四川 成都 610031)

  • 出版日期:2025-05-20 发布日期:2025-05-20
  • 作者简介:刘磊(1999—),男,湖南衡阳人,湖南科技大学安全科学与工程在读硕士,研究方向为隧道瓦斯灾害防治。 E-mail: 2307194543@qq.com。 *通信作者: 黄飞, E-mail: fhuang@hnust.edu.cn。

Gas Sealing by Curtain Grouting in Tunnels Crossing Coal Mine Goafs: A Case Study of Huayingshan Tunnel

LIU Lei1, HAO Shengwei2, HUANG Fei1, 3, *, LUO Taiyou4, LUO Yafei1, 3ZHONG Xiaofeng1, LONG Qibi1, TAN Gang5   

  1. (1. School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; 2. CCCC-SHEC Meng Xing Engineering Co., Ltd., Xi′an 710119, Shaanxi, China; 3. Hunan Key Laboratory of Coal Mine Gas and Roof Disaster Prevention and Control, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; 4. Guiyang Jingshuo Safety Technology Co., Ltd., Guiyang 550081, Guizhou, China; 5. Chengdu Survey, Design and Research Institute Co., Ltd., China Railway Eryuan Engineering Group, Chengdu 610031, Sichuan, China)


  • Online:2025-05-20 Published:2025-05-20

摘要: 为解决公路隧道穿越煤矿采空区面临的采空区瓦斯涌出难题,依托华蓥山隧道正穿高顶山煤矿采空区工程,剖析瓦斯来源、涌出规律及潜在风险,提出采用超前帷幕注浆圈堵瓦斯技术方案并进行优化设计,并对帷幕注浆的瓦斯封堵效果进行检验。研究结果表明: 1)隧道掌子面连通采空区后,采空区内的瓦斯气体在压差作用下涌入隧道内部,同时邻近采空区和煤岩层不断解吸瓦斯气体对采空区进行补给,导致隧道内部瓦斯体积分数持续升高; 2)帷幕注浆采用全孔一次性注浆工艺和分段前进式注浆工艺,隧道掌子面布置8圈注浆孔,注浆形成4段喇叭状帷幕圈,帷幕注浆填充率达80%,帷幕圈能有效填堵围岩裂隙、固结破碎岩石、隔离瓦斯气体; 3)在应用帷幕注浆圈堵瓦斯技术后,在采空区孔内检测瓦斯体积分数,其最大值由帷幕注浆前的80%降低至注浆后的9.6%。该技术成功应用于华蓥山隧道穿越高顶山煤矿采空区,有效防治了隧道穿越采空区的瓦斯灾害,提高了采空区瓦斯的排放效率。

关键词: 隧道, 瓦斯治理, 瓦斯圈堵, 超前帷幕注浆, 煤矿采空区

Abstract: When the Huayingshan tunnel intersected the Gaodingshan coal mine goaf, gas outbursts occurred. To address this issue, the sources, emission patterns, and potential risks of the gas are analyzed. A technical solution involving the use of advance curtain grouting rings for gas sealing is proposed, subsequently optimized, and its effectiveness tested and verified. The results demonstrate the following. (1) After the tunnel face intersects the goaf, gas from the goaf is injected into the tunnel owing to the pressure difference. Gas from the surrounding goaf and coal seam continuously recharges the goaf, leading to a sustained increase in gas concentration in the tunnel. (2) The curtain grouting process uses a full-hole one-time grouting method and a segmented forward grouting approach. Eight rounds of grouting holes are arranged at the tunnel face, forming a four-section trumpet-shaped curtain ring. These measures achieve an 80% curtain grouting filling rate, with the curtain ring effectively sealing cracks in the surrounding rock. (3) The detected gas concentration in the goaf hole decreases from 80% before grouting to 9.6% after grouting, demonstrating the effectiveness of this gas control technology for tunnels crossing coal mine goafs.

Key words: tunnel, gas control, gas sealing, advance curtain grouting, coal mine goaf