• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (7): 1353-1360.DOI: 10.3973/j.issn.2096-4498.2025.07.012

• 施工技术 • 上一篇    下一篇

浅埋地铁车站冻结工程冻胀系统控制技术及应用

李方政1, 丁航1, *, 高伟1, 刘威2, 姜浩亮1, 叶玉西1, 3, 方亮文1   

  1. (1. 煤炭科学研究总院, 北京 100013; 2. 雅江清洁能源科学技术研究(北京)有限公司, 北京 100084;3. 北京中煤矿山工程有限公司, 北京 100013)
  • 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:李方政(1972—),男,安徽合肥人,2005年毕业于东南大学,道路与铁道工程专业,博士,研究员,现从事市政冻结工程及生态修复等方面管理与研究工作。 E-mail: 1291441700@qq.com。 *通信作者: 丁航, E-mail: dinghangz@163.com。

Integrated Control Technology and Application of Frost Heave for Shallow Underground Metro Station by Artificial Ground Freezing Method

LI Fangzheng1, DING Hang1, *, GAO Wei1, LIU Wei2, JIANG Haoliang1, YE Yuxi1, 3, FANG Liangwen1   

  1. (1. China Coal Research Institute, Beijing 100013, China; 2. Yajiang Clean Energy Science and Technology Research (Beijing) Co., Ltd., Beijing 100084, China; 3. Beijing Coal Mine Construction Company Ltd., Beijing 100013,China)
  • Online:2025-07-20 Published:2025-07-20

摘要: 为解决城市浅埋地铁车站冻结工程冻胀效应突出问题,提出冻胀效应全周期系统控制技术。在冻结设计阶段,通过原状土水泥改良设计和“冻土+钢管”复合结构联合承载设计等冻结壁安全减量设计方法,在保证冻结壁承载强度的前提下优化其厚度; 在冻结施工阶段,采用基于时空效应的冻胀综合抑制技术。在时间维度上,通过错峰冻结精准控制单阶段冻土体量,减少冻胀叠加效应的时空累积; 在空间维度上,配合采用间歇冻结和取土泄压等措施实现对冻结壁发展速度及边界的精细化控制。以保障冻结壁功能安全为前提,通过全周期优化控制冻结壁厚度及边界,抑制冻胀效应对邻近结构物的位移扰动。以上海地铁18号线江浦路车站冻结工程为依托进行试验,结果表明: 1)当水泥掺入比例达12.5%时,灰色黏土的冻胀率较原始状态降低53.5%。2)与纯冻土结构相比,采用冻土钢管复合结构的冻结壁厚度减小约42.53%。3)施工阶段应用基于时空效应的综合抑制技术后,监测点竖向位移变化速率最高降幅达150.71%,该技术能够有效控制浅埋地铁车站冻结工程的冻胀效应。

关键词: 浅埋地铁车站, 冻结, 冻胀, 系统控制技术

Abstract: The frost heave effect is significant in artificial ground freezing (AGF) projects involving shallow underground metro stations. To address this, an integrated whole-circle control technology is developed to mitigate frost heave. During the design stage, the frozen wall thickness is optimized to ensure bearing capacity, utilizing safety-reduction design approaches such as soil-cement modification and frozen composite structures. In the construction stage, comprehensive frost heave suppression technology considering spatiotemporal effects is applied. Temporally, staggered freezing schedules precisely control the volume of frozen soil in each phase, preventing cumulative frost heave. Spatially, intermittent freezing combined with soil extraction for pressure relief allows refined control over the frozen wall′s development rate and boundary conditions. On the premise of ensuring the functional safety of the frozen wall, the impact of frost heave on adjacent buildings is suppressed by optimizing and controlling the thickness and boundary of the frozen wall throughout the whole-circle. A field test was conducted at the Jiangpu road station of Shanghai metro line 18. The test data show that: (1)When the cement mixing ratio reaches 12.5%, the frost heave rate of gray clay is reduced by 53.5% compared with the original state. (2)Compared with the frozen soil structure, the frozen wall thickness is reduced by 42.53% with the frozen soil-steel pipe composite structure. (3)The measured data demonstrate that the proposed technology effectively mitigates frost heave in shallow underground metro stations, reducing the change rate of vertical displacements at monitoring points by up to 150.71%.

Key words: shallow-buried metro station, artificial ground freezing, frost heave, integrated control technology