• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 168-181.DOI: 10.3973/j.issn.2096-4498.2025.S1.018

• 地质与勘察 • 上一篇    下一篇

基于高分辨率神经网络的双护盾TBM隧道双模态围岩精准分级

龙海涛1, 张世殊1, 马春驰2, *, 李天斌2, 刘庄源2, 刘洋3   

  1. 1. 中国电建集团成都勘测设计研究院有限公司, 四川 成都 611130 2. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059 3. 重庆市测绘科学技术研究院, 重庆 401121
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:龙海涛(1986—),男,四川资阳人,2023年毕业于成都理工大学,地质工程专业,博士,高级工程师,现从事岩土工程研究工作。E-mail: longht1986@163.com。*通信作者: 马春驰, E-mail: machunchi17@cdut.edu.cn。

Precise Dual-Mode Classification of Surrounding Rocks of Tunnels Bored by Double-Shield TBM Based on High Resolution Neural Networks

LONG Haitao1, ZHANG Shishu1, MA Chunchi2, *, LI Tianbin2, LIU Zhuangyuan2, LIU Yang3   

  1. (1. PowerChina Chengdu Engineering Corporation Limited, Chengdu 611130, Sichuan, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China; 3. Chongqing Institute of Surveying and Mapping Science and Technology, Chongqing 401121, China)
  • Online:2025-07-15 Published:2025-07-15

摘要: 为实现更精确、更实时的智能围岩分级以匹配双护盾TBM高效掘进,基于先进的HRNet高分辨率神经网络,通过分析地质与掘进参数2类指标的强关联性,构建基于该2类指标融合的高分辨率TBM隧道双模态围岩精准智能分级模型,开展实时的围岩分级工作。结果表明: 1)推进速度与刀盘转矩2个参数与围岩坚硬度有较强的关联性,通过这2个掘进参数二维组合的线性趋势以及拐点区间可以区分不同的岩石坚硬程度; 2)刀盘滚动角和撑靴俯仰角2个参数与岩体完整性有较强的关联性,通过这2个掘进参数的摆动幅度和角度可区分不同的岩体完整性; 3)通过将2个模态单一的HRNet高分辨率神经网络进行拼接和全连接,构建的双模态围岩分级模型能够实现离散型数值的地质模态数据与连续型数值的掘进模态数据融合,该模型能够从围岩稳定性与岩机交互等多方面更加精确地反映围岩分级,应用准确率可达95.0% 4)相比仅用掘进指标的单模态模型,双模态模型在测试集上表现效果更好,其Macro F1 Score0.985

关键词: 双护盾TBM, 高分辨率神经网络, 智能围岩分级, 双模态

Abstract: Efficient excavation and closed construction environment of double-shield TBM relies on more accurate and real-time intelligent surrounding rock classification methods. To achieve this, the strong correlation between the two indices of geology and excavation parameters is analyzed based on advanced HRNet high-resolution neural networks. Furthermore, an accurate dual-mode intelligent classification model of surrounding rock with high-resolution is built based on the fusion of these two indices. As a result, real-time surrounding rock classification can be conducted. Main findings are as follows: (1) The advance speed and cutterhead torque are strongly correlated with rock hardness. The linear characteristics of these two parameters distinguish different rock hardness. (2) The cutter rotation angle and gripper pitch angle are strongly correlated with rock integrity, and different rock integrity can be distinguished by these two parameters. (3) A dual-mode classification of surrounding rocks established by bonding and fully connecting two single-mode HRNet high-resolution neural networks fuses discrete numerical geological modal data with continuous numerical tunneling modal data, thereby more accurately reflecting the surrounding rock classification from multiple aspects such as surrounding rock stability and rock-machine interaction. The application accuracy reaches 95%. (4) The dual-mode model outperforms single-mode model on testing set, with an Macro F1 Score of 0.985.

Key words: double-shield TBM, high resolution neural network, intelligent surrounding rock classification, dual mode