• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 290-307.DOI: 10.3973/j.issn.2096-4498.2025.S1.029

• 施工技术 • 上一篇    下一篇

强挤压碎裂软岩隧道主被动联合大变形控制技术研究

高红杰1 2, 邢培刚3, 马伟斌1 2*, 赵建军3, 邹文浩1 2, 张金龙1, 2, 黄新宇4, 徐浩田1, 2   

  1. (1. 中国铁道科学研究院集团有限公司铁道建筑研究所, 北京 100081 2. 高速铁路轨道系统全国重点实验室, 北京 100081; 3. 兰新铁路甘青有限公司, 甘肃 兰州 730050;4. 中铁十一局集团第四工程有限公司, 湖北 武汉 430000)
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:高红杰(1990—),男,河北张家口人,2022年毕业于北京交通大学,土木工程专业,博士,助理研究员,主要从事隧道与地下工程方面的研究。 E-mail: gaohongjie@rails.cn。*通信作者: 马伟斌, E-mail: dwangfei@126.com。

Active-Passive Combined Large Deformation Control Technology of Strong Extrusion Fractured Soft Rock Tunnel

GAO Hongjie1, 2, XING Peigang3, MA Weibin1, 2, *, ZHAO Jianjun3, ZOU Wenhao1, 2ZHANG Jinlong1, 2, HUANG Xinyu4, XU Haotian1, 2   

  1. (1. Railway Engineering Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081, China; 2. State Key Laboratory of High-speed Railway Track System, Beijing 100081, China; 3. Lanzhou-Xinjiang Railway Gansu-Qinghai Co., Ltd., Lanzhou 730050, Gansu, China; 4. China Railway 11th Bureau Group No.4 Engineering Co., Ltd., Wuhan 430000, Hubei, China)

  • Online:2025-07-15 Published:2025-07-15

摘要: 针对西部地区某高原隧道遇到的国内外罕见的强挤压碎裂围岩大变形难题,通过分析隧道的变形特征和多轮方案调整后的变形控制效果,梳理解决隧道大变形问题的关键在于兼顾“防溜塌”与“控变形”的施工方案;重点研究分析隧道进口段区域构造特点、岩体特性、地应力情况以及松动圈扩展规律,并结合力学开挖模型阐明强挤压碎裂软岩隧道大变形机制。在此基础上,提出以“分部开挖防溜塌、抗锚注支护控变形”为核心的主被动联合支护理念,并形成“分部开挖、密排超前、强化钢拱架支护、施作内置式锚杆、扩大径向注浆”的强挤压碎裂软岩隧道大变形控制技术。对比优化前后的现场监测数据,发现应用大变形控制技术后,围岩变形减少超过40%,前期变形速率降低13.6 ~20.0 mm/d,钢拱架应力减小57%,有效解决了强挤压碎裂围岩引起的大变形灾害问题。

关键词: 围岩大变形, 强挤压碎裂围岩, 软岩隧道, 变形机制, 主被动联合支护, 变形控制技术

Abstract: A rare large deformation of strong extrusion fractured surrounding rock occurred to a high-altitude tunnel in the western region of China. To effectively control such deformation, the deformation characteristics of the tunnel and the deformation control effect of different supporting schemes are analyzed, and the construction principle of collapse prevention and deformation control is emphasized. Intensively, the regional structural characteristics, rock mass characteristics, in-situ stress, and surrounding rock loose circle expansion pattern in the entrance section of tunnel are examined, and large deformation mechanism of tunnel in strong extrusion fractured soft rock is analyzed based on mechanical excavation model. Subsequently, a concept of active-passive combined supporting with the core of "sectioned excavation to prevent collapse and arch-bolt-grouting support to control deformation" is proposed, yielding a series of large deformation control technologies of strong extrusion fractured soft rock tunnel. These technologies include sectioned excavation, dense advance support, strengthened steel arch support, built-in prestressed bolt, and expanded radial grouting. The applicable results show that the deformation is reduced by more than 40%, the early deformation rate is reduced by 13.620.0 mm/d, and the steel arch stress is reduced by 57%, effectively inhibiting the occurrence of large deformation disasters caused by strong extrusion fractured surrounding rock. 

Key words: large deformation of surrounding rock, strong extrusion fractured surrounding rock, soft rock tunnel, deformation mechanism; active-passive combined support, deformation control technology