• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2021, Vol. 41 ›› Issue (12): 2048-2057.DOI: 10.3973/j.issn.2096-4498.2021.12.004

• 研究与探索 • 上一篇    下一篇

盾构隧道同步注浆浆液浮力引起的管片错台量分析

肖明清1, 2, 封坤3, 张忆1, 周子扬3   

  1. 1. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063 2. 水下隧道技术湖北省工程实验室, 湖北 武汉 430063; 3. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031)

  • 出版日期:2021-12-20 发布日期:2022-01-05
  • 作者简介:肖明清(1970—),男,湖南新邵人,1992年毕业于西南交通大学,地下工程与隧道专业,博士,教授级高级工程师,现从事隧道与地下工程的设计与研究工作。E-mail: tsyxmq@163.com。
  • 基金资助:
    国家自然科学基金(51878569, 52078430

Analysis of Segment Dislocation Caused by Grout Buoyancy during Synchronous Grouting of Shield Tunnels

XIAO Mingqing1, 2, FENG Kun3, ZHNAG Yi1, ZHOU Ziyang3   

  1. (1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 2.Hubei Provincial Engineering Laboratory for Underwater Tunnel, Wuhan 430063, Hubei, China; 3. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)

  • Online:2021-12-20 Published:2022-01-05

摘要: 为探明盾构隧道施工过程中同步注浆浆液浮力引起的管片错台量变化规律,以某大直径盾构隧道工程为例,提出“从整体受力状态分析到局部变形计算”的管片环间错台量计算方法,并分别建立盾构隧道施工期纵向分析模型与管片环间错台量计算模型,对不同埋深、不同浆液凝固时间和不同掘进速度条件下施工期隧道结构纵向受力、管片环间错台量进行计算与对比分析。结果表明: 1)采用盾构隧道施工期纵向分析模型计算隧道纵向内力,后将纵向内力作为边界条件代入管片环间错台量计算模型中求解错台量的方法是合理可靠的; 2)管片环脱出盾尾后受注浆浆液浮力、水浮力等作用产生负弯矩并承受最大剪力,易发生错台变形; 3)管片环间错台规律为管片环脱出盾尾后首先向上错台,经过渡段后向下错台,最后进入平稳阶段; 4)浆液凝固时间将显著影响施工期管片错台的产生,缩短浆液凝固时间可以有效减小管片环间错台; 5)埋深增大时,由于盾构推力增加、上覆载荷增大及围岩性质变好,将减少管片环间错台的产生,因此,对于埋深较小的盾构隧道应更加注意错台现象的发生。

关键词: 盾构隧道, 管片衬砌, 同步注浆, 管片上浮, 管片环间错台

Abstract: To determine the variation laws of segment dislocation caused by the buoyancy of synchronous grouting slurry during shield tunneling, a method for the calculation of segment dislocation is proposed, starting with an analysis of the integral forced status and ending with the calculation of local deformation, based on a largediameter shield tunnel project. Then, via numerical and comparative analysis, a longitudinal analysis model of the shield tunnel during the construction period and a threedimensional(3D) calculation model of segment dislocation are established to calculate segment dislocation under different cover depths, grout densities, and grout solidification times. The results indicate the following. (1) It is reasonable to use the longitudinal analysis model of the shield tunnel during construction to calculate the longitudinal structural inner forces and then substitute the force boundary conditions into the 3D segment dislocation calculation model to determine the amount of segment dislocation. (2) As the segment ring exits the shield tail, it is subjected to the buoyancy of the grouting liquid and the buoyancy of the surrounding water, resulting in negative bending and maximum shear strain, which is prone to ring dislocation. (3) The segment dislocation laws are as follows: it begins with an upward stagger, followed by a downward stagger after passing through stable segments, and it eventually enters the stable stage. (4) The slurrys qualities have a considerable impact on the occurrence of dislocation during tunnel construction. Dislocation between rings can be effectively decreased by lowering the density of the slurry and increasing the rate of solidification. (5) As the tunnel cover depth increases, segmental ring dislocation is reduced due to the increase in the overlying stress and the improved surrounding rock properties. As a result, greater attention should be paid to the occurrence of segment dislocation in shield tunnels with a shallow cover depth.

Key words: shield tunnel, segmental lining, synchronous grouting, segment uplift, segment rings dislocation

中图分类号: