• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2021, Vol. 41 ›› Issue (S2): 236-245.DOI: 10.3973/j.issn.2096-4498.2021.S2.030

• 研究与探索 • 上一篇    下一篇

深基坑开挖对下卧近距地铁盾构隧道的影响分析与保护技术研究#br#

杜建强1, 朱兆荣2, 吴红刚2 *   

  1. 1. 甘肃铁科建设工程咨询有限公司, 甘肃 兰州  730070; 2. 中铁西北科学研究院有限公司, 甘肃 兰州 730070)

  • 出版日期:2021-12-31 发布日期:2022-03-16
  • 作者简介:杜建强(1980—),男,甘肃兰州人,2002年毕业于兰州铁道学院,土木工程专业,本科,工程师,现从事城市轨道交通工程、隧道及地下工程技术管理工作。E-mail: 450074781@qq.com。*通信作者: 吴红刚, E-mail: 271462550@qq.com。
  • 基金资助:
    甘肃省自然科学基金项目(145RJZA068)

Influence of Deep Foundation Pit Construction on Near Subway Shield Tunnel and Its Protection Technology

DU Jianqiang1 ZHU Zhaorong2 WU Honggang2 *   

  1. 1. Gansu Tieke Construction Engineering Consulting Co., Ltd., Lanzhou 730070, Gansu, China;2. Northwest Research Institute Co., Ltd. of CREC, Lanzhou 730070, Gansu, China)

  • Online:2021-12-31 Published:2022-03-16

摘要: 富水圆砾地层中,上覆结构深基坑开挖(基底距洞顶1.34 m)可引起下卧既有盾构隧道顶部地基回弹、应力释放、隧道隆起、管片开裂漏水等重大工程风险。针对此问题,首先, 计算出基坑底及隧底地基回弹量,通过隧道内加载反压使隧底地基产生沉降与基坑开挖后隧底地基回弹相抵消,从而计算出隧道内每延米加载质量。然后,利用 MIDAS GTS 有限元软件建立三维数值分析模型设计了3种工况,发现工况1不采取措施、工况2采取板凳桩基时,隧底最大隆起16.812.5 mm与理论计算14.95 mm接近;工况3采取板凳桩基+隧道内压载措施时,隧底平均隆起4.7 mm与计算压载后的结构差异变形量3 mm接近。按工况3实施后隧道竖向位移拱顶8.46 mm、隧底3.16 mm,完成“板凳桩”后隧道拱顶隆起7.64 mm、拱底2.56 mm,结构差异沉降最大2.96 mm,满足规范要求。得出结论: 1)隧道内压载对控制其隆起效果最佳; 2)基坑卸载隧道顶部基本临空后隧道受“内部压载、两侧挤压”整体呈“竖椭圆”趋势; 3)板凳桩基隔离效果不明显,但形成“板凳桩”后整体骑跨在盾构隧道上方彻底解决了上覆结构施工期及后期高铁运营动载对地铁隧道可能造成的重大影响。

关键词: 盾构隧道, 地下结构, 深基坑开挖, 隧道配重, 板凳桩, 保护技术

Abstract: The excavation of deep foundation pit (1.34 m from the top of the tunnel) in water-rich round gravel stratum often brings risks of foundation rebound, stress release, tunnel uplift, pipe cracking, structural leakage, etc., for the shield tunnel below. To solve these problems, the rebound amount at the bottom of foundation pit and tunnel foundation is calculated theoretically. As the foundation rebound amount caused by foundation pit exvacation is offset by the settlement caused by loaded pressure, the loading weight per running meter inside tunnel is calculated. And then a 3D numerical analysis model using MIDAS GTS finite element software is built and three working conditions, i.e., the method without any control measures (condition 1), that with bench pile foundation (condition 2), and that with bench pile foundation and loading pressure inside tunnel (condition 3), are simulated respectively. The results show that: (1)In conditions 1 and 2, the maximum uplifts are 16.8 mm and 12.5 mm, which is close to the theoretical calculation result (14.95 mm). (2)In working condition 3, the average uplift at tunnel bottom is 4.7 mm, which is very close to the structural difference after theoretical calculation (3 mm).  The method in working condition 3 is adopted in practical engineering, the vertical displacement of tunnel vault and invert is 8.46 mm and 3.16 mm respectively, and after bench pile constructed, the uplift of tunnel vault and invert is 7.64 mm and 2.56 mm respectively, the differential settlement of structure is 2.96 mm, which can meet the requirements of standard. It is concluded that: (1)Internal loading is the best way to control uplift. (2)After the foundation pit excavation, the upper part of the tunnel is free from load, its internal load and extrusion on both sides cause the tunnel to become a "vertical ellipse" . (3)Bench pile foundation has limited isolation effect, but if it rides cross the upper part of shield tunnel, the disturbance from upper structure construction and highspeed railway operation can be effectively reduced. 

Key words: shield tunnel, underground structure, deep foundation pit excavation, tunnel distribution weight, bench pile, protection technology

中图分类号: