• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (8): 1327-1337.DOI: 10.3973/j.issn.2096-4498.2023.08.007

• 研究与探索 • 上一篇    下一篇

考虑岩体膨胀效应的高地应力软岩隧道稳定性控制研究——以米林隧道为例

陶琦   

  1. (中铁十九局集团第六工程有限公司, 江苏 无锡 214028
  • 出版日期:2023-08-20 发布日期:2023-09-11
  • 作者简介:陶琦(1976—), 男,辽宁阜新人,2008年毕业于辽宁工程技术大学,岩土专业,硕士,高级工程师,主要从事隧道工程稳定性分析理论与控制技术研究工作。E-mail: 2217716912@qq.com。

Stability Control of High GeoStress Soft Rock Tunnels Considering Rock Expansion Effect: A Case study of Milin Tunnel

TAO Qi   

  1. (China Railway 19th Bureau Group Sixth Engineering Co., Ltd., Wuxi 214028, Jiangsu, China)
  • Online:2023-08-20 Published:2023-09-11

摘要: 为明确深部软岩隧道围岩压力机制,指导设计合理的大变形治理方案,以米林隧道工程为依托,基于岩体弹塑性力学,推导出围岩膨胀压力解析式。结合Kastner算式,引入断面径向位移u与塑性区半径Rp之间的函数关系,求解出膨胀压力与形变压力的特征曲线函数解GRC,探明膨胀压力与形变压力在断面径向位移过程中的演化规律。根据收敛-约束法,结合支护特征曲线SCC,分析考虑膨胀压力条件下GRC曲线与SCC曲线交点变化趋势,以设计出合理的软岩大变形控制参数。研究结果表明: 1)仅考虑形变压力而设计的支护结构不满足围岩稳定性要求,当围岩径向位移达到530 mm时,仅考虑形变压力pi时围岩对支护结构的压力为0.82 MPa,考虑膨胀压力pr时支护承载压力增至1.37 MPa,膨胀压力占比达40.1% 2)采用“钢架+锚喷”初期支护将围岩位移释放至upeak=0.325 m时增设间距d=0.7 m I25b钢架的联合支护方案,能对形变压力进行合理释放,同时有效抑制膨胀压力过度增大; 3)第2层钢架设置23 d后围岩变形收敛为56.1 mm,通过理论计算、数值分析与工程应用验证了支护方案的可行性。

关键词: 深部隧道工程, 高地应力, 软岩大变形, 形变压力, 膨胀压力, 支护优化设计

Abstract: To elucidate the surrounding rock pressure mechanism in deep soft rock tunnels and develop effective deformation control technologies, a case study is conducted on the Milin tunnel. The analytical formula for the expansion pressure of the surrounding rock is derived based on the principles of elastoplastic mechanics applied to rock masses. Based on the Kastner formula, the functional relationship between the radial displacement of a cross-section and plastic zone radius Rp is introduced. Further, the ground reaction curve (GRC) of the expansion and deformation pressures is established, thus exploring the evolution law of these pressures during radial displacement of the crosssection. Based on the convergenceconstraint method and supporting confining curve (SCC), the variation trends of the intersection of GRC and SCC under conditions of expansion pressure are analyzed to design rational control parameters for large deformations in soft rocks. The key findings are as follows: (1) The supporting structure designed only considering the deformation pressure does not meet the stability requirements of the surrounding rock. When the radial displacement of the surrounding rock reaches 530 mm, the pressure of the surrounding rock exerted on the supporting structure reaches 0.82 MPa when considering only the deformation pressure WT5《TNR#I》〗pWT5《TNR》〗i; however, the pressure increases to 1.37 MPa when expansion pressure WT5《TNR#I》〗pWT5《TNR》〗r is considered, accounting for 40.1% increased pressure. (2) A strategic approach involving primary support comprising a combination of "steel frame + anchor spray" is utilized to counter the displacement of the surrounding rock to WT5《TNR#I》〗uWT5《TNR》〗peak=0.325 m. Incorporating an additional I25B steel frame with a space of WT5《TNR#I》〗dWT5《TNR》〗=0.7 m effectively moderates the deformation pressure and mitigates excessive expansion pressure. (3) After introducing the secondlayer steel frame over 23 days, the surrounding rock deformation converged to 56.1 mm. The feasibility of the proposed support scheme was validated through theoretical calculation, numerical analyses, and engineering applications.

Key words: deep tunnel engineering, high geo-stress, large deformation of soft rock, deformation pressure, expansion pressure, support optimization design