• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 730-739.DOI: 10.3973/j.issn.2096-4498.2025.04.007

• 研究与探索 • 上一篇    下一篇

基于稳态识别的磁致伸缩传感器测试平台故障诊断策略研究

张宏达1, 蒙先君1, 韩伟锋2, 张阐娟1, 姜永成3, 邹强3 *   

  1. 1. 中铁隧道局集团有限公司设备分公司, 河南 洛阳 471000 2. 盾构及掘进技术国家重点实验室, 河南 郑州 450001; 3. 天津农学院工程技术学院, 天津 300392)

  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:张宏达(1983—),男,河南孟津人,2007年毕业于河南科技大学,机械设计制造及其自动化专业,本科,高级工程师,现从事盾构维修改造工作。 E-mail: 304043715@qq.com。 *通信作者: 邹强, E-mail: qiangzou1@126.com。

Fault Diagnosis Strategy for Magnetostrictive Sensor Test Platform Based on Steady State Recognition

ZHANG Hongda1, MENG Xianjun1, HAN Weifeng2, ZHANG Chanjuan1, JIANG Yongcheng3, ZOU Qiang3, *   

  1. (1. Equipment Branch of China Railway Tunnel Group Co., Ltd., Luoyang 471000, Henan, China; 2. State Key Laboratory of Shield Machine and Tunneling Technology, Zhengzhou 450001, Henan, China; 3. School of Engineering Technology, Tianjin Agricultural University, Tianjin 300392, China)

  • Online:2025-04-20 Published:2025-04-20

摘要: 为解决磁致伸缩传感器测试平台动态响应过程中系统状态数据很难包括在故障诊断策略训练数据集中,导致数据驱动故障诊断策略诊断结果可靠性低的问题,提出一种基于稳态识别的数据驱动故障诊断策略。首先,设计一种稳态识别策略,得到测试平台稳态运行过程中的系统状态数据。采用能够处理单类分类问题的支持向量数据描述(support vector data descriptionSVDD)对测试平台进行稳态识别,并在SVDD训练过程中采用粒子群优化(particle swarm optimizationPSO)对SVDD的超参数进行优化。其次,采用基于PSO优化的支持向量机(support vector machineSVM)算法,通过测试平台稳态运行过程中的状态数据进行故障诊断,提高故障诊断的正确率和诊断结果的可靠性。最后,利用SimulinkSimscape模块,建立测试平台仿真模型,对基于稳态识别的故障诊断策略进行验证。测试结果表明: 与未包含稳态识别的基于SVM的数据驱动故障诊断策略相比,不同模式下基于稳态识别的故障诊断策略正确率平均提高5%,该策略在测试平台故障诊断的有效性得到验证。

关键词: 盾构, 磁致伸缩传感器测试平台, 稳态识别, 故障诊断

Abstract: Incorporating system state data from the dynamic response phase of a magnetostrictive sensor testing platform into training datasets for fault diagnosis strategies is challenging, often resulting in low reliability of data-driven diagnostic results. To address this issue, a data-driven fault diagnostic strategy based on steady-state identification is proposed. First, a steady-state identification strategy is designed to obtain system-state data generated during the steady-state operation of the test platform. Support vector data description (SVDD), which can handle single-class classification problems, is used for steady-state identification of the test platform. During the training process, particle swarm optimization (PSO) is utilized to optimize the hyperparameters of the SVDD. Second, a support vector machine (SVM) optimized by PSO is adopted to perform fault diagnosis based on the state data collected during the steady-state operation of the test platform to enhance fault diagnosis accuracy and the reliability of the diagnostic results. Finally, a simulation model of the test platform is established using the Simscape module in Simulink to validate the proposed steady-state identification-based fault diagnostic strategy. The simulation results demonstrate that compared with the SVM-based data-driven fault diagnosis strategy without steady-state identification, the proposed strategy achieves an average accuracy improvement of 5% across different modes, confirming the effectiveness of the proposed method for fault diagnosis in the test platform.

Key words: shield, magnetostrictive sensor test platform, steady-state identification, fault diagnosis