• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (4): 774-781.DOI: 10.3973/j.issn.2096-4498.2025.04.011

• 研究与探索 • 上一篇    下一篇

矩形顶管工程不同泥浆润滑工况下顶进力计算研究

梅嘉豪1, 张鹏1, 2, 李水明3, 张云龙4, *, 许勇1, 吴如东1   

  1. 1. 中国地质大学工程学院, 湖北 武汉 430074 2. 岩土钻掘与防护教育部工程研究中心, 湖北 武汉 430074; 3. 湖北神龙市政建设工程有限公司, 湖北 武汉 430056; 4. 中国电建集团贵阳勘测设计研究院有限公司, 贵州 贵阳 550081)

  • 出版日期:2025-04-20 发布日期:2025-04-20
  • 作者简介:梅嘉豪(2000—),男,湖北黄冈人,中国地质大学(武汉)地质工程专业在读硕士,研究方向为非开挖地下工程领域。 E-mail: jhm926s@163.com。 *通信作者: 张云龙, E-mail: djgyy_zyl@163.com。

Jacking Force Calculation of Rectangular Pipe Jacking Project Under Different Slurry Lubrication Conditions

MEI Jiahao1, ZHANG Peng1, 2, LI Shuiming3, ZHANG Yunlong4, *, XU Yong1, WU Rudong1   

  1. (1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, Hubei, China; 2. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, the Ministry of Education, Wuhan 430074, Hubei, China; 3. Hubei Shenlong Municipal Construction Engineering Co., Ltd., Wuhan 430056, Hubei, China; 4. PowerChina Guiyang Engineering Corporation Limited, Guiyang 550081, Guizhou, China)

  • Online:2025-04-20 Published:2025-04-20

摘要: 为解决矩形顶管工程不同泥浆润滑工况下顶进力难以准确预测的问题,结合上海某矩形顶管工程案例实测顶进力变化规律,首先,将顶进过程分成无泥浆润滑、泥浆润滑逐渐发挥以及泥浆润滑充分发挥3种工况; 其次,采用梯形楔形体模型计算矩形顶管迎面阻力,并基于修正太沙基松动土压力理论和泥浆润滑条件,分析3种工况下管土接触状态与界面摩擦因数,考虑管土摩阻力和管浆摩阻力,提出不同工况下顶管侧摩阻力计算方法,在此基础上,形成矩形顶管顶进力预测新方法; 最后,与现场实测数据及现有矩形顶管规范计算结果进行对比。结果表明: 1)提出的计算模型预测精度更高,与实测顶进力误差基本在±15%以内,验证了其合理性。2)初期无泥浆润滑工况下,应采用管土全接触模型和无润滑管土界面摩擦因数计算侧摩阻力; 后期泥浆润滑充分发挥工况下,采用管土一面接触和润滑条件下界面摩擦因数计算侧摩阻力更加准确; 而泥浆润滑逐渐发挥工况处于上述2种工况的过渡阶段,润滑注浆后管土接触状态迅速由全接触变为一面接触。

关键词: 矩形顶管, 泥浆, 润滑工况, 顶进力, 侧摩阻力, 管土接触

Abstract: Accurate prediction of the jacking force in rectangular pipe jacking projects is difficult under varying slurry lubrication conditions. To address this challenge, the jacking force variation pattern of a pipe jacking project in Shanghai, China, is measured. The jacking process is categorized into three conditions: no slurry, gradual slurry, and full slurry lubrication. Second, the trapezoidal wedge model is used to calculate the head-on resistance of the rectangular pipe jacking. Based on the modified Tershaji loose-earth pressure and slurry lubrication conditions, the contact state and interface friction factor between the pipe and soil under the three slurry lubrication conditions are analyzed. A new method for predicting the rectangular jacking force is developed by considering the friction resistances of the pipe-soil and pipe-slurry interfaces, thus proposing a calculation method for the lateral friction resistance under different slurry lubrication conditions. Finally, the results are compared with the field-measured data and calculations based on the existing rectangular pipe jacking specifications. The results demonstrate the following: (1) The proposed model exhibits higher prediction accuracy, with an error between the proposed model and the measured jacking force within ±15%, thus validating its rationality. (2) Under the initial condition with no slurry lubrication, the lateral friction resistance should be calculated using a full-contact model between the pipe and soil and the corresponding interface friction factor without lubrication. When slurry lubrication is fully used in later stages, calculating the lateral friction resistance using the interface friction factor under lubricated pipe-soil contact conditions yields more accurate results. Under gradual slurry lubrication conditions, the contact states between the pipe and soil quickly change from full contact to one-sided contact.

Key words: rectangular pipe jacking, slurry, lubricant condition, jacking force, lateral friction resistance, pipe-soil contact