• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1469-1482.DOI: 10.3973/j.issn.2096-4498.2025.08.005

• 研究与探索 • 上一篇    下一篇

Optimization of Hydration Heat Control Scheme for Full-Section Casting of Immersed Tube Tunnels Based on Orthogonal Experiments (沉管隧道全断面浇筑水化热控制方案正交试验优化研究)

裴超, 刘艳萍*   

  1. (中铁隧道局集团三处有限公司, 广东 广州 511400)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:裴超(1982—),男,河南舞阳人,2005年毕业于青岛理工大学,交通工程专业,本科,正高级工程师,现从事地下工程及隧道工程的施工和管理工作。E-mail: 94030125@qq.com。 *通信作者: 刘艳萍, E-mail: 275188733@qq.com。

Optimization of Hydration Heat Control Scheme for Full-Section Casting of Immersed Tube Tunnels Based on Orthogonal Experiments 

PEI Chao, LIU Yanping*   

  1. (The 3rd Engineering Co., Ltd. of China Railway Tunnel Group, Guangzhou 511400, Guangdong, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 为提高沉管隧道全断面浇筑沉管管节的施工质量,依托广州市某沉管隧道工程,运用正交设计原理结合数值模拟方法,系统研究冷水管入口水温、水管流速、通水时间、保温措施以及入模温度等水化热控制因素对沉管管节全断面整体浇筑过程中温控指标(最高温度Tmax、最大内表温差ΔTie_max)、开裂风险指标(防裂安全系数Kmin)的影响规律以及联合作用效果,并提出适宜经济的全断面浇筑温控优化方案。研究结果表明: 1)降低入模温度和延长通水时间可显著降低Tmax和ΔTie_max,减少保温措施能有效降低Tmax,但会显著升高ΔTie_max,而入口水温和流速没有明显控制作用。2)提高冷水管入口水温、降低入模温度和延长通水时间可降低开裂风险,水管流速、保温措施指标敏感性较低。3)廊道上方顶板(温度与温差峰值)、冷水管入口周围(高热梯度开裂风险)和中隔墙与底板连接部(几何突变开裂风险)是管节全断面浇筑水化热控制的关键区域,应重点监测。4)现场选用入口水温15 ℃、流速2.0 m3/h、通水时间2 d、入模温度25 ℃方案,以钢模板条件进行保温。该方案下实测管节Tmax=64.57 ℃,ΔTie_max=24.16 ℃,均小于规范限制,有效控制了沉管管节的开裂风险。

关键词: 沉管隧道, 全断面浇筑, 正交试验, 温控方案优化, 水化热, 开裂风险

Abstract: In order to improve the construction quality of tube segments during full-section casting of immersed tube tunnel, by taking an immersed tube tunnel project in Guangzhou as the background, the orthogonal design principle is adopted in this paper in combination with numerical simulation to systematically study the influencing laws and combined effects of hydration heat control measures such as the inlet water temperature, flow rate and water flow duration of cold water pipe, thermal insulation measures and pouring temperature on the temperature control indicators (the maximum temperature Tmax and the maximum interior-exterior temperature difference ΔTie_max) and cracking risk indicators (the anti-cracking safety factor Kmin) during the full-section casting process of immersed tube segments. A suitable and cost-effective temperature control optimization scheme for full-section casting of immersed tube segments is proposed. Research results show that: (1) Reducing the pouring temperature and prolonging the water flow duration can significantly decrease Tmax and ΔTie_max, and reducing the thermal insulation measures can effectively decrease Tmax but greatly increase ΔTie_max, while the inlet water temperature and flow rate have no obvious control effect. (2) Increasing the inlet water temperature, reducing the pouring temperature, and prolonging the water flow duration can reduce the cracking risk, while the flow rate and thermal insulation measures have relatively low sensitivity. (3) The roof above the corridor (peak temperature and temperature difference), the area around the inlet of cold water pipe (cracking risk due to high heat gradient), and the junction of the middle partition wall, and the floor (cracking risk due to geometric mutation) are the key areas for hydration heat control of tube segments during full-section casting, and shall be closely monitored. (4) On the site, the scheme with an inlet water temperature of 15 ℃, a flow rate of 2.0 m3/h, a water flow duration of 2 days and a pouring temperature of 25 ℃ was adopted, and thermal insulation was carried out under the condition of steel formwork. Under this scheme, the measured Tmax of the tube segment was 64.57 ℃, and ΔTie_max was 24.16 ℃, both less than the limits specified in the relevant standards, and the cracking risk of immersed tube segments was effectively controlled.

Key words: immersed tube tunnel, full-section casting, orthogonal experiment, optimization of temperature control scheme, hydration heat, cracking risk