• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 258-268.DOI: 10.3973/j.issn.2096-4498.2025.S2.023

• 地质与勘察 • 上一篇    下一篇

盾构隧道掘进被动源地震波探测方法及其应用——以苏州东高铁隧道探测为例

吴奎1, 苏彦心2, 孙丰彪1, 李忠治2, 陈磊2, *   

  1. (1. 中铁十四局集团大盾构工程有限公司, 江苏 南京 211800; 2. 山东大学土建与水利学院, 山东 济南 250061)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:吴奎(1974—), 男, 山东淄博人, 2015年毕业于石家庄铁道大学,土木工程专业,本科,高级工程师,主要从事隧道及地下工程施工管理方面的工作。E-mail: wk740314@163.com。*通信作者: 陈磊, E-mail: 237374317@qq.com。

Passive Source Seismic Wave Detection in Shield Tunneling: A case study of Suzhou East High-Speed Railway Tunnel

WU Kui1, SU Yanxin2, SUN Fengbiao1, LI Zhongzhi2, CHEN Lei2, *   

  1. (1. China Railway 14th Bureau Large Shield Engineering Co., Ltd.,  Nanjing 211800, Jiangsu, China; 2. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决孤石、老旧桩基等不良地质条件限制盾构隧道掘进速度及威胁施工安全的问题,将盾构掘进噪声作为震源,提出一种盾构隧道被动源地震波探测方法。重点分析软土环境中盾构掘进噪声的波场传播规律和特征,研究盾构隧道掘进噪声被动源波场恢复提取方法,采用适用于盾构隧道环境的先导、波场观测方式,获取盾构隧道被动源地震波探测有效数据,总结盾构隧道被动源探测方法的特点。主要结论如下: 1)所提出的基于盾构掘进噪声的被动源地震波探测方法,可以通过分析和提取掘进噪声中的有效反射波进行地质探测; 2)采用基于互相关干涉波场提取、绕射叠加偏移成像等在内的噪声源数据探测成像方法,实现了盾构隧道前方不良地质的成像; 3)依托通苏嘉甬高铁苏州东隧道开展现场试验,有效探明了隧道前方两侧桩基础的分布情况,通过数值模拟手段进行验证,最终结果与试验结果具有较好的一致性,为施工提供了较可靠的地质信息。

关键词: 盾构隧道, 被动源地震波法, 不良地质探测, 桩基础探测, 高铁隧道

Abstract: Adverse geological conditions such as isolated boulders and aged pile foundations pose challenges to shield tunneling speed and construction safety. To address this issue, a passive source seismic wave detection method using shield tunneling noise as source is proposed. Focusing on propagation patterns and characteristics of shield tunneling noise in soft soil environments, a passive source wavefield recovery method is proposed, and an advance observation technique for lead and wavefields suitable for shield tunneling environment is established. Based on effective passive source seismic data, this approach is characterized . Key findings include: (1) The proposed approach extracts effective reflection waves from tunneling noise for geological exploration, providing a novel approach for advance geological prediction in shield tunnels. (2) A noise source detection imaging method incorporating cross-correlation interferometry and diffractive superposition offset imaging is developed, achieving visualized imaging of adverse geological conditions ahead of tunnel face. (3) Field tests conducted at Suzhou East tunnel of the Tongzhou-Suzhou-Jiaxing-Ningbo high-speed railway successfully mapped pile foundation distribution patterns on both sides of the tunnel, with numerical simulations verifying the results′ consistency and providing reliable geological information for construction.

Key words: shield tunnel, passive source seismic wave method, adverse geological detection, pile foundation detection, high-speed railway tunnel