• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (12): 2343-2351.DOI: 10.3973/j.issn.2096-4498.2025.12.014

• 规划与设计 • 上一篇    下一篇

基于熵权-TOPSIS法的沉管隧道管节结构选型方法及应用

陈伟乐1, 王元庆2, 孙春华3, 张秦帛4, 李晓明4, 陈琳2   

  1. (1. 广东省公路建设有限公司, 广东 广州 510623; 2. 长安大学运输工程学院, 陕西 西安 710061; 3. 深中通道管理中心, 广东 中山 528400; 4. 长安大学经济与管理学院, 陕西 西安 710054)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:陈伟乐(1973—),男,广东江门人,2003年毕业于华南理工大学,建筑与土木工程专业,硕士,教授级高级工程师,主要从事公路工程与跨海通道建设管理研究工作。E-mail: lot_68@163.com。

Structural Selection and Application of Immersed Tube Tunnel Elements Based on Entropy Weight Method-TOPSIS Approach

CHEN Weile1, WANG Yuanqing2, SUN Chunhua3, ZHANG Qinbo4, LI Xiaoming4, CHEN Lin2   

  1. (1. Guangdong Provincial Highway Construction Co., Ltd., Guangzhou 510623, Guangdong, China; 2. School of Transportation Engineering, Chang′an University, Xi′an 710061, Shaanxi, China; 3. Shenzhen-Zhongshan Link Administration Center, Zhongshan 528400, Guangdong, China; 4. School of Economics and Management, Chang′an University, Xi′an 710054, Shaanxi, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决沉管隧道管节结构选型中安全、可靠、耐久及经济等多因素协同决策的难题,引入熵权法-TOPSIS综合评价模型,构建涵盖技术、施工、经济、环境等多维度的管节结构方案技术经济比选体系。熵权法-TOPSIS综合评价模型系统提取并量化圬工体技术成熟度、管节预制工艺难度、场地要求、浮运难度、圬工体耐久性、环保影响、结构可靠性、结构防水性能、工期及造价总计10项关键指标。首先,通过熵权法客观确定各指标权重; 然后,运用TOPSIS法计算各备选方案与理想解的相对贴近度,实现对多个管节结构方案的综合排序; 最后,以深中通道沉管隧道项目为案例,对钢壳混凝土管节、钢筋混凝土管节及钢壳-钢筋混凝土组合方案进行实证分析。结果表明: 钢壳混凝土管节在10项指标综合评价中表现最优,其综合得分为0.72,排序第一; 组合方案与钢筋混凝土方案分别位列第二与第三。该模型能够有效整合技术可行性、施工复杂性、经济成本与环境影响等多维信息,为沉管隧道管节结构选型提供一套系统、客观的量化决策工具,有助于在复杂工程条件下实现结构方案的优选与决策支持。

关键词: 沉管隧道, 管节结构选型, 技术经济性比选, 熵权法-TOPSIS模型, 深中通道

Abstract: To address the challenges of multicriterion decision-making involving safety, reliability, durability, and economy when selecting an appropriate immersed tube tunnel element strategy, the authors introduce a comprehensive evaluation model that integrates the entropy weight method (EWM) and the technique for order preference by similarity to an ideal solution (TOPSIS). The model establishes a technical and economic comparison framework for multidimensional structural element plans, incorporating technological, construction-related, economic, and environmental factors. Ten key indicators are systematically identified and quantified: structural technique maturity, prefabrication difficulty of tunnel elements, construction site requirements, floating transportation difficulty, masonry structure durability, environmental protection impact, structural reliability, structural waterproofing performance, construction duration, and engineering cost. EWM is used to objectively determine the indicator weights, and TOPSIS is subsequently applied to calculate the relative closeness of each alternative strategy to the ideal solution, enabling systematic ranking. Using the immersed tube tunnel project of the Shenzhen-Zhongshan link as a case study, an empirical analysis evaluates three strategies: a steel-shell concrete element strategy, a reinforced concrete element strategy, and a combined steel-shell-reinforced-concrete strategy. The results show that the steel-shell concrete element strategy achieves the best overall performance, with a comprehensive score of 0.72, ranking first. The combined and reinforced concrete strategies rank second and third, respectively. The proposed model effectively integrates multidimensional information—including technical feasibility, construction complexity, economic cost, and environmental impact—thereby providing a systematic and objective quantitative decision-making tool for selecting immersed tube tunnel element structures. It supports the optimization of structural strategies and aids decision-making under complex engineering conditions.

Key words: immersed tube tunnel, tunnel element structure selection, technical and economic comparison, entropy weight method-TOPSIS model, Shenzhen-Zhongshan link