• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (5): 955-963.DOI: 10.3973/j.issn.2096-4498.2025.05.010

• 规划与设计 • 上一篇    下一篇

长距离隧道通风接力风管安装位置研究——以合武高铁隧道为例

姜学鹏1, 2, 3, 郭元俊1, 2, 3, 张晓宁1, 2, 3, 管鸿浩4   

  1. 1. 武汉科技大学资源与环境工程学院, 湖北 武汉 430081 2. 武汉科技大学安全与应急研究院,湖北 武汉 430081; 3. 武汉科技大学消防安全研究中心, 湖北 武汉 430081;4. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063)

  • 出版日期:2025-05-20 发布日期:2025-05-20
  • 作者简介:姜学鹏(1976—),男,山东平度人,2008年毕业于中南大学,消防工程专业,博士,教授,主要从事隧道火灾动力学与防治、城市公共安全研究工作。 E-mail: jxp5276@126.com。

Installation Position of Ventilation Relay Duct in Long-Distance Tunnel: A Case Study on Hefei-Wuhan High-Speed Railway Tunnel

JIANG Xuepeng1, 2, 3, GUO Yuanjun1, 2, 3, ZHANG Xiaoning1, 2, 3, GUAN Honghao4   

  1. (1. School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; 2. Institute of Safety and Emergency, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; 3. Research Center of Fire Safety, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China; 4. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China)

  • Online:2025-05-20 Published:2025-05-20

摘要: 为提高长距离施工隧道独头压入式通风中风管漏风计算精度,进而确定接力风机安装位置,保证通风效率,首先,根据理论推导出风管沿程各单元段漏风率、漏风量的计算公式,并使用Python开发风管沿程漏风率计算程序;然后,与常规漏风计算公式对比,验证本文提出的理论计算公式的先进性; 接着,提出风管漏风条件下长距离压入式通风接力风机安装位置的确定方法,并以合武高铁隧道斜井工区大里程侧为例,根据工程实际情况进行接力风机选型,使用该方法得到其使用不同管径的风管进行通风时,能够满足施工隧道通风要求的接力风机安装位置,即通过理论计算公式确定的风管内风压最小值处; 最后,运用CFD软件进行通风模拟,验证该理论计算公式的准确性以及接力风机安装位置确定方法的合理性。研究结果表明: 1)合武高铁隧道斜井工区大里程侧使用管径1.5 m的风管时,风管出口处风速最接近推荐值; 2)在2 200 m处加装SDFA-2No4.0型接力风机进行通风效果最好。

关键词: 隧道, 接力风机, 风管漏风率, 漏风量, 理论计算公式

Abstract: Improving the accuracy of air-duct air leakage in long-distance tunnel dead-end forced ventilation is crucial for determining the optimal relay fan installation locations and ensuring ventilation efficiency. First, a theoretical model is established to deduce the air leakage rate and volume for each unit section along the ventilation pipe. A Python-based program is developed to analyze the leakage rate along the pipe. The proposed model is then compared with existing methodologies to evaluate its advancement. Second, a method is proposed to determine relay fan installation locations in long-distance forced ventilation systems under leakage conditions. Using the large-mileage side of the slope shaft work area of the Hefei-Wuhan high-speed railway tunnel as a case study, relay fan selection is performed based on actual engineering situations. The proposed method identifies the relay fan installation location for different pipe diameters to satisfy construction ventilation requirements. The designated location corresponds to the point of minimum wind pressure inside the ventilation pipe, as determined by the theoretical model. Finally, computational fluid dynamics simulations are employed to validate the accuracy of the theoretical model and the methods effectiveness in determining relay fan installation locations. Results demonstrate that the wind speed at the air-duct outlet aligns most closely with the recommended value when a 1.5-m-diameter air duct is used on the long-distance side of the inclined shaft work area. The most effective ventilation effect is achieved when an SDF (A)-2-NO 4.0 relay fan is installed at 2 200 m for ventilation.

Key words: tunnel, relay fan, air leakage rate of air duct, air leakage volume, theoretical calculation model