• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 32-41.DOI: 10.3973/j.issn.2096-4498.2025.S1.004

• 研究与探索 • 上一篇    下一篇

基于本征正交分解的施工隧道污染物体积分数快速预测

赵希望1, 夏文洁2, 王继红2, *, 蒋爽3, 王树刚2, 吴元金1, 罗占夫1, 刘祺君4   

  1. 1. 中铁隧道局集团(上海)特种高新技术有限公司, 上海 201306 2. 大连理工大学, 辽宁 大连 116024; 3. 大连民族大学, 辽宁 大连 116600; 4. 广弘科技(大连)有限公司, 辽宁 大连 116084)

  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:赵希望(1983—),男,河南开封人,2007年毕业于西安建筑科技大学,建筑环境与设备工程专业,本科,高级工程师,现从事隧道与地下工程研究工作。E-mail: 276908703@qq.com。*通信作者: 王继红, E-mail: wangjihong@dlut.edu.cn。

Rapid Prediction of Pollutant Concentration in Construction Tunnels Based on Proper Orthogonal Decomposition

ZHAO Xiwang1, XIA Wenjie2, WANG Jihong2, *, JIANG Shuang3WANG Shugang2, WU Yuanjin1, LUO Zhanfu1, LIU Qijun4   

  1. (1. China Railway Tunnel Group (Shanghai) Special High-tech Co., Ltd., Shanghai 201306, China; 2. Dalian University of Technology, Dalian 116024, Liaoning, China; 3. Dalian Minzu University, Dalian 116600, Liaoning, China; 4. Guanghong Technology Co., Ltd., Dalian 116084, Liaoning, China)

  • Online:2025-07-15 Published:2025-07-15

摘要: 为解决传统数值模拟方法计算耗时长、难以满足实时性需求的问题,提出一种本征正交分解与支持向量机相结合的预测方法,旨在实现复杂工况下施工隧道污染物浓度场的快速重构。首先,建立施工隧道爆破后CO运移的数值模型; 其次,针对不同炸药量和海拔的典型工况,模拟爆破后隧道内CO体积分数分布,以此来获得样本数据集; 再次,通过本征正交分解对高维度浓度场数据进行降维处理,基于能量截取前三阶模态作为特征基函数,降低计算的复杂度; 最后,采用支持向量机模型建立已知工况参数与模态系数之间的非线性映射关系,实现目标工况下不同时间隧道内CO体积分数的快速预测。研究结果表明: 该预测模型具有显著的准确性和高效性。其中,在预测未知炸药量工况下隧道爆破后的CO体积分数时,最大相对误差不大于15%,平均相对误差为2.73%; 在预测未知海拔工况下隧道爆破后的CO体积分数时,最大相对误差不大于6%,平均相对误差为1%。此外,该预测模型耗时仅为数值模拟计算耗时的1/600,使施工隧道污染物浓度场的近实时获取成为可能。

关键词: 施工隧道, 污染物体积分数, 本征正交分解, 支持向量机, 快速预测

Abstract: Traditional numerical simulation methods has long calculating period for pollutant concentration in construction tunnels, this disables real-time demand. To address this challenge, a rapid prediction method integrating proper orthogonal decomposition (POD) and support vector machine (SVM) is proposed, aiming to enable rapid reconstruction of pollutant concentration fields in construction tunnels under complex working conditions. In this approach, a numerical model is first established for CO migration in tunnels after blasting, simulating CO concentration distributions under typical scenarios with varying explosive quantities and altitudes, thus yielding a sample dataset. High-dimensional concentration field data are then subjected to dimensionality reduction via POD, where the first three-order modes selected based on energy contribution serve as characteristic basis functions to mitigate computational complexity. Further, an SVM model is employed to construct a nonlinear mapping between known operational parameters and POD modal coefficients, enabling fast prediction of tunnel CO concentrations at target times under specified conditions. Validation results demonstrate the models notable accuracy and efficiency. For predicting CO concentrations under unknown explosive quantities, the maximum relative error is no more than 15% with an average of 2.73%; for unknown altitudes, the maximum relative error is no more than 6% with an average of 1%. Critically, the computation time of the proposed model is 1/600 of that required for traditional numerical simulations, facilitating real-time acquisition of tunnel pollutant concentration fields.

Key words: construction tunnel, pollutant concentration, proper orthogonal decomposition, support vector machine, rapid prediction