• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 204-213.DOI: 10.3973/j.issn.2096-4498.2025.S2.018

• 研究与探索 • 上一篇    下一篇

高预应力长锚索在深部薄层硬岩岩爆控制中的作用

潘岳1, 2, 洪开荣1, 刘永胜1, 3, 游金虎1, 谢韬1, 张继超1, 3   

  1. (1. 中铁隧道局集团有限公司, 广东 广州 511458; 2. 深圳大学土木与交通工程学院, 广东 深圳 518060; 3. 隧道掘进机及智能运维全国重点实验室, 河南 郑州 450001)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:潘岳(1993—),男,四川成都人,2021年毕业于西南交通大学,地质资源与地质工程专业,博士,高级工程师,现从事地质、隧道与地下工程研究工作。E-mail: yuepan@my.swjtu.edu.cn。

Role of High-Prestress Long Anchor Cables in Rockbursts Control in Deep Thin Hard Rock Strata

PAN Yue1, 2, HONG Kairong1, LIU Yongsheng1, 3, YOU Jinhu1, XIE Tao1, ZHANG Jichao1, 3   

  1. (1. China Railway Tunnel Group Co., Ltd., Guangzhou 511458, Guangdong, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 3. State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou 450001, Henan, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决深部极高地应力环境下隧道岩爆控制的难题,以组合梁原理为理论基础,构建层状岩石受力的力学模型,深入分析层状岩石的受力模式,以及锚索支护与层状岩石协同作用的力学机理; 同时,基于离散元法建立数值模型,系统研究隧道围岩能量场的演化规律,揭示不同支护方式对围岩能量场的影响机制。研究结果表明: 1)在相同地应力条件下,层状岩石积聚的弹性应变能大小,与岩石力学性能、层间距紧密相关,其中薄层硬岩更容易发生岩爆现象。2)通过施作锚索将薄弱的层状岩石串联成整体,使节理面两侧的岩石紧密贴合,相比无支护时岩石可沿节理面自由滑移的受力状态,大幅减少了岩石在外力作用下积聚的弹性应变能,从而显著降低岩爆风险。3)高预应力长锚索能够有效重塑围岩应力状态,推动能量从隧道开挖周边向深部围岩转移,削弱隧道周边围岩的能量集中程度,进一步降低岩爆发生的风险; 相比之下,被动支护结构无法主动调控围岩应力,故难以实现对能量场的有效干预。

关键词: 隧道, 层状岩石, 岩爆, 高预应力长锚索, 能量场

Abstract: To address the challenge of controlling rockburst in tunnels under extremely high stress in deep geological conditions, a mechanical model of layered rock under stress is constructed based on the principle of composite beams. This model is used to deeply analyze the stress mode of layered rock and the mechanical mechanism of the cooperative effect between anchor cable support and layered rock. Meanwhile, a numerical model is established based on the discrete element method to systematically examine the evolution patterns of the energy field of the tunnel surrounding rock, and to reveal the influence mechanism of different support methods on the energy field of the surrounding rock. The research results indicate the following: (1) Under the same geological stress conditions, the amount of elastic strain energy accumulated by layered rocks is closely related to the rock mechanical properties and the inter-layer spacing. Among them, thin hard rocks are more prone to rockburst phenomena. (2) By installing anchor cables to connect the weak layered rocks into a whole, the rock fractures on both sides are closely adhered. Compared with the force state where the rock can freely slide along the fracture surface without support, the elastic strain energy accumulated by the rock under external force is significantly reduced, thereby significantly reducing the risk of rockburst. (3) High pre-stressed long anchor cables can effectively reshape the stress state of the surrounding rock, promote the transfer of energy from the surrounding area of tunnel excavation to the deep surrounding rock, weaken the energy concentration degree of the surrounding rock around the tunnel, and further reduce the risk of rockburst. In contrast, passive support structures cannot actively regulate the stress of the surrounding rock, disabling effective intervention in the energy field.

Key words: tunnel, layered rock, rockburst, high prestressed long anchor cable, energy field