• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 103-112.DOI: 10.3973/j.issn.2096-4498.2026.01.008

• 研究与探索 • 上一篇    下一篇

地铁车站SP-TS管幕工法支护参数对地表沉降的影响

柏谦1, 李征1, 赵文1, *, 彭志鹏2   

  1. (1. 东北大学资源与土木工程学院, 辽宁 沈阳 110819; 2. 中广核(揭阳)核电有限公司, 广东 揭阳 515200)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:柏谦(1994—),男,辽宁铁岭人,2023年毕业于东北大学,土木工程专业,博士,讲师,现从事岩土与地下工程研究工作。 E-mail: baiqianneu@163.com。 *通信作者: 赵文, E-mail: wenneu@163.com。

Impact of Small Pipe-Roof-Top Slab Method Support Parameters in Metro Stations on Surface Settlement

BAI Qian1, LI Zheng1, ZHAO Wen1, *, PENG Zhipeng2   

  1. (1. School of Resources & Civil Engineering, Northeast University, Shenyang 110819, Liaoning, China; 2. China General Nuclear Power Corporation (Jieyang) Nuclear Power Co., Ltd., Jieyang 515200, Guangdong, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为解决现有的暗挖工法在修建地铁车站时面临的地层变形控制困难、施工周期长、工序复杂等问题,提出一种将小直径管幕与地铁车站永久顶板结构相结合的协同支护方法——小直径管幕顶板法(SP-TS工法)。以沈阳地铁3号线和平南大街站为工程背景,首先,系统阐述该工法建设地铁车站的具体施工步骤; 然后,建立经现场监测数据验证的三维数值模型,分析暗挖长度、车站跨度、管幕刚度及顶板弹性模量等参数对地表沉降的影响规律; 最后,通过正交试验设计和多元线性回归方法,构建不同暗挖长度、车站跨度下,支护参数(管幕刚度、顶板弹性模量)与地表沉降之间的定量预测模型。研究结果表明: 1)地表沉降在顶板施工阶段最为显著,是该工法沉降控制的关键环节; 2)地表沉降随暗挖长度和车站跨度的增加呈对数增长,而随管幕刚度和顶板弹性模量的增加呈对数减小,其中管幕刚度的影响更为突出,将其刚度值由EI提升至2EI时可减少沉降约8.2 mm; 3)基于多元回归分析构建的沉降预测模型,给出不同跨度与暗挖长度下地铁车站的分级支护参数匹配方案。

关键词: 小直径管幕顶板法, 参数匹配, 地铁车站, 地表沉降, 数值模拟

Abstract: When the mining method is applied in metro station construction, several challenges are encountered, including difficulty in controlling ground deformation, long construction periods, and complex construction procedures. To address these issues, a collaborative support method that combines a small-diameter pipe roof with the permanent roof structure of metro stations is proposed, namely the small pipe-roof-top slab (SP-TS) method. A case study is conducted at Heping South Street station on Shenyang metro line 3, and the construction sequence of the SP-TS method for metro station construction is systematically described for the first time. Subsequently, a three-dimensional numerical model, validated by on-site monitoring data, is established to analyze the influence of excavation length, station span, pipe roof stiffness, and top slab elastic modulus on surface settlement. Finally, based on orthogonal experimental design and multiple linear regression analysis, a quantitative prediction model is developed to describe the relationship between support parameters (pipe roof stiffness and top slab elastic modulus) and surface settlement under different excavation lengths and station spans. The results indicate that: (1) surface settlement is most pronounced during the top slab construction stage, which is a critical phase for settlement control using this method; (2) surface settlement increases logarithmically with excavation length and station span, whereas it decreases logarithmically with pipe roof stiffness and top slab elastic modulus. The influence of pipe roof stiffness is particularly significant; increasing its stiffness from EI to 2EI reduces settlement by approximately 8.2 mm; (3) based on multiple regression analysis, a settlement prediction model is established to provide graded support parameter schemes for metro stations with different spans and excavation lengths.

Key words: small pipe-roof-top slab method, parameter matching, metro station, surface settlement, numerical simulation