• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 124-133.DOI: 10.3973/j.issn.2096-4498.2026.01.010

• 研究与探索 • 上一篇    下一篇

一种融合几何学习特征的隧道围岩结构面特征点云提取方法

李轶惠1, 2, 许振浩1, 2, 潘东东1, 2, *, 杨文韬2, 3, 张弛1, 2   

  1. (1. 山东大学齐鲁交通学院, 山东 济南 250061; 2. 隧道工程灾变防控与智能建养全国重点实验室,山东 济南 250061; 3. 山东大学土建与水利学院, 山东 济南 250061)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:李轶惠(1998—),女,山东德州人,山东大学岩土工程专业在读博士,研究方向为隧道及地下工程三维地质建模。 E-mail: cumtb123456lyh@163.com。*通信作者: 潘东东, E-mail: pddyantu@163.com。

An Approach Integrating Geometric Learning for Point-Cloud Extraction of Tunnel Rock-Mass Discontinuity Features

LI Yihui1, 2, XU Zhenhao1, 2, PAN Dongdong1, 2, *, YANG Wentao2, 3, ZHANG Chi1, 2   

  1. (1. School of Qilu Transportation, Shandong University, Jinan 250061, Shandong, China; 2. State Key Laboratory for Tunnel Engineering, Jinan 250061, Shandong, China; 3. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 针对隧道复杂岩体结构面智能识别中存在的多尺度特征丢失与分割精度不足等问题,提出一种融合几何学习特征的GeoSegNet++(enhanced geometric segmentation network)模型,实现隧道围岩结构面的智能化分割与产状参数高精度提取。首先,该模型采用可变形几何卷积网络(deformable geometric convolutional network, DGCv2)动态调整邻域采样范围,以有效捕捉结构面的局部几何特征;其次,构建多模态特征交互金字塔(multimodal interaction pyramid, MIP),通过跨层级注意力机制实现多尺度几何特征的自适应融合,显著提升复杂结构面边界的分割精度;最后,引入自适应密度聚类算法(adaptive density clustering algorithm, ADC),基于法向量夹角距离约束与局部密度峰值检测,完成结构面优势组的自动划分。利用实验室规则几何体与隧道缩尺模型2类数据对所提方法进行验证。结果表明: 1)在规则几何体点云中,GeoSegNet++模型方法所提取的主导结构面产状与DSE(discontinuity set extractor)软件的识别结果相比,倾向平均差异小于3°; 2)在隧道缩尺点云数据中,GeoSegNet++模型方法所提取的主导不连续面与真实数据倾向误差最大为3.21°,倾角误差低于1°。

关键词: 隧道, 围岩结构面, 智能识别, 深度学习, 优势分组, 聚类分析

Abstract: The intelligent identification of complex rock-mass discontinuities in tunnels faces multiple challenges, including multi-scale feature loss and low segmentation accuracy. To address these issues, an enhanced geometric segmentation network (GeoSegNet++) that integrates geometric features is proposed to enable intelligent segmentation and extraction of occurrence parameters of rock discontinuities. First, the model employs a deformable geometric convolutional network (DGCv2) to dynamically adjust the neighborhood sampling range, thereby effectively capturing local geometric features. Second, a multi-modal interaction pyramid is constructed that utilizes a cross-level attention mechanism to adaptively fuse multi-scale geometric features, which significantly improves boundary segmentation accuracy for complex discontinuities. Finally, an adaptive density clustering algorithm is introduced to automatically identify dominant sets of discontinuities based on normal vector angular distance constraints and local density peak detection. The proposed method is validated using two types of data: regular geometric bodies and tunnel-scale point cloud data. The experimental results demonstrate the following: (1) For regular geometric bodies, the difference in dip direction of the dominant discontinuities extracted by the proposed method is less than 3° compared with those identified using a discontinuity set extractor. (2) For tunnel-scale point cloud data, the discontinuity surface parameters extracted by the proposed method exhibit an orientation error of up to 3.21° relative to the dominant discontinuity surface group in the actual data, with dip angle errors below 1°.

Key words: tunnel, surrounding rock discontinuity surface, intelligent identification, deep learning, dominant grouping, cluster analysis