• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2026, Vol. 46 ›› Issue (1): 134-144.DOI: 10.3973/j.issn.2096-4498.2026.01.011

• 地质与勘察 • 上一篇    下一篇

基于APSO-PC-XGBoost模型的TBM施工隧洞岩体软弱破碎概率预测方法

李旭1, 于洪伟1, *, 刘建国2, 叶明3, 任长春3, 吴根生3, 董子开1   

  1. (1. 北京交通大学 城市地下工程教育部重点实验室, 北京 100044; 2. 中国铁路乌鲁木齐局集团有限公司, 新疆 乌鲁木齐 830011; 3. 中国水利水电第六工程局有限公司, 辽宁 沈阳 110169)
  • 出版日期:2026-01-20 发布日期:2026-01-20
  • 作者简介:李旭(1980—),男,北京人,2009年毕业于香港科技大学,土木工程专业,博士,教授,现从事TBM智能化等方面的研究工作。 E-mail: xuli@bjtu.edu.cn。 *通信作者: 于洪伟, E-mail: 24115116@bjtu.edu.cn。

A Rapid Sensing Method for Rock Mass Quality in TBM Tunnel Construction Based on Adaptive Particle Swarm Optimization-Probability Calibration-Extreme Gradient Boosting Model

LI Xu1, YU Hongwei1, *, LIU Jianguo2, YE Ming3, REN Changchun3, WU Gensheng3, DONG Zikai1   

  1. (1. Key Laboratory of Urban Underground Engineering, the Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Urumqi Group Co., Ltd., Urumqi 830011, Xinjiang, China; 3. Sinohydro Bureau 6 Co., Ltd., Shenyang 110169, Liaoning, China)
  • Online:2026-01-20 Published:2026-01-20

摘要: 为实现TBM掘进过程中岩体软弱破碎概率的快速、定量表征,以引绰济辽工程TBM施工过程中采集的大量实测数据为基础,对掘进参数在不同地质条件下的变化规律进行系统分析。通过对推进速度、刀盘转速、刀盘转矩和总推力等关键参数的统计特征与波动规律研究,筛选出推进速度、刀盘转速、刀盘转矩和总推力4个具有代表性的基础掘进参数,并基于能量与力学响应关系构建3个物理融合指标(转矩贯入指数、推力贯入指数、掘进比能),将基础掘进参数和物理融合指标作为模型输入。随后,引入自适应粒子群优化(APSO)算法和概率校准(PC)方法对模型进行优化和修正,提出融合智能优化与概率修正机制的APSO-PC-XGBoost模型,实现TBM掘进过程中岩体软弱破碎概率的实时预测。研究结果表明: 1)推进速度、刀盘转矩、总推力和刀盘转速4个参数在由完整岩体向软弱破碎岩体过渡过程中,其均值显著下降,波动性明显增强; 2)构建的APSO-PC-XGBoost模型较基础XGBoost模型F1分数增大0.069,布里尔分数降低9.73%,显示出较高的预测精度与稳定性; 3)提出不同围岩类别下概率阈值动态调整策略,并确定Ⅲ、Ⅳ、Ⅴ类围岩对应软弱破碎预警阈值分别为0.32、0.46、0.69。

关键词: 隧洞, TBM, 岩体质量, 岩体软弱破碎概率, 极端梯度提升决策树, 自适应粒子群优化算法, 概率校准

Abstract: To achieve rapid and quantitative characterization of rock mass quality during TBM tunneling, a case study is conducted on the Chuo′er river to Xiliao river water-diversion project. A large amount of measured TBM tunneling data is collected to systematically analyze variation patterns of tunneling parameters under different geological conditions. By examining the statistical characteristics and fluctuation patterns of key parameters, four representative basic tunneling parameters, namely advance rate, cutterhead rotation speed, torque, and thrust, are selected. In addition, three physical fusion indices, namely the torque-penetration index, thrust-penetration index, and specific energy ratio, are constructed based on energy and mechanical response relationships. These parameters and indices are used as model inputs. Subsequently, an adaptive particle swarm optimization (APSO) algorithm and a probability calibration (PC) method are introduced to optimize and correct the model. On this basis, a hybrid APSO-PC-extreme gradient boosting (XGBoost) model integrating intelligent optimization and probabilistic correction mechanisms is established, enabling rapid and quantitative sensing of rock mass quality at the TBM tunnel face. The results show that (1) the advance rate, cutterhead torque, total thrust, and cutterhead rotation speed exhibit a clear decrease in mean values and a marked increase in fluctuation during the transition from intact rock zones to weak and fractured rock zones; (2) compared with the basic XGBoost model, the proposed model improves the F1 score by approximately 0.069 and reduces the Brier score by 9.73%, indicating higher prediction accuracy and stability; and (3) a dynamic probability threshold adjustment strategy is proposed for different surrounding rock grades, and the corresponding early-warning thresholds for weak and fractured rock are determined to be 0.32, 0.46, and 0.69 for Grades Ⅰ, Ⅳ, and Ⅴ rock masses, respectively.

Key words: tunnel, TBM, rock mass quality, weak fracture probability of rock mass, extreme gradient boosting, adaptive particle swarm optimization, probability calibration