• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2020, Vol. 40 ›› Issue (4): 481-489.DOI: 10.3973/j.issn.2096-4498.2020.04.003

• 研究与探索 • 上一篇    下一篇

逆断层黏滑错动对跨断层隧道影响机制的模型试验研究

刘学增1, 唐精2, 桑运龙1, 师刚1, 李学锋3   

  1. (1. 同济大学 土木信息技术教育部工程研究中心, 上海 200092; 2. 同济大学地下建筑与工程系, 上海 200092; 3. 上海徐汇滨江开发投资建设有限公司, 上海 200030)
  • 收稿日期:2019-08-12 出版日期:2020-04-20 发布日期:2020-04-30
  • 作者简介:刘学增(1971—),男,山东东明人,2001 年毕业于同济大学,结构工程专业,博士,教授级高级工程师,主要从事高速公路隧道、轨道交 通隧道结构监测检测新技术、加固设计等方面的研究工作。 E-mail: xuezengl@263. net。
  • 基金资助:
    国家自然科学基金资助项目(51478342, 51278377)

Model Experimental Study on Influencing Mechanism of Reverse Fault Stick-slip Dislocation on Cross-fault Tunnel

LIU Xuezeng1, TANG Jing2, SANG Yunlong1, SHI Gang1, LI Xuefeng3   

  1. (1. Civil Engineering Information Technology Research Center of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Shanghai Xuhui Binjiang Development Investment Construction Co., Ltd., Shanghai 200030, China)
  • Received:2019-08-12 Online:2020-04-20 Published:2020-04-30

摘要: 为指导隧道穿越活动断层时的抗错断设计,避免逆断层黏滑错动造成跨断层隧道结构的严重破坏,以棋盘石隧道为工程背 景,通过 1 ∶ 50 相似模型试验,研究逆断层黏滑错动所引起的山岭隧道破坏模式,分析隧道和地层变形过程及破坏特征,得到以下 结论: 1)逆断层错动在断层迹线附近地层形成剪切带,剪切带沿着断层线略微凸向试验装置上盘的弧线方向发展。2)断层错动对 试验装置上盘内隧道变形破坏的影响大于下盘,最大土压力和最大纵向应变主要分布在上盘隧道中; 土压力和纵向应变变化规律 相似,均随错动位移的增加而不断增加。3)隧道最终破坏为逆断层下的剪切破坏,局部伴随张拉破坏,剪切破坏主要表现为变形缝 两侧隧道衬砌脱落和纵向裂缝;断层错动对隧道影响区域主要集中在断层破碎带及附近2D(D 为隧道洞径)区域,尤其是试验装置 上盘部分,在跨断层隧道的设计阶段需引起足够重视。

关键词: 隧道, 逆断层黏滑错动, 模型试验, 剪切带, 破坏模式

Abstract: The fault-resistant design of tunnel crossing active faults is very important to avoiding the serious damage of cross-fault tunnel structure caused by stick-slip dislocation of reverse fault. Hence, a 1 ∶ 50 similar model experiment for Qipanshi Tunnel is established to study the failure mode of mountain-crossing tunnel caused by stick-slip dislocation of reverse fault, and analyze the deformation process and failure characteristics of tunnel and strata. Some conclusions are drawn as follows: (1) The reverse fault dislocation forms a shear zone in the stratum near the fault trace, and the shear zone develops along the arc direction of the upward disk with a slight protrusion of the fault line. (2) The influence of fault dislocation on the deformation failure of the upper tunnel is greater than that of the footwall; the maximum earth pressure and the maximum longitudinal strain are mainly distributed in the upper tunnel; the soil pressure and longitudinal strain increase with the increase of the dislocation displacement. (3) The ultimate failure of the tunnel is shear failure under reverse fault, which is accompanied by tensile failure locally; the shear failure is mainly manifested as tunnel lining falling off and longitudinal cracks on both sides of the deformation joint; the influence of fault dislocation on the tunnel is mainly concentrated in the fault fracture zone and the 2D (where D is the diameter of tunnel) area around it, especially in the upper part of the tunnel, where enough attention should be paid to during the design of crossfault tunnel.

Key words: tunnel, reverse fault stick-slip dislocation, model experiment, shear zone, failure mechanism

中图分类号: