• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S1): 226-235.DOI: 10.3973/j.issn.2096-4498.2025.S1.023

• 施工技术 • 上一篇    下一篇

斜井热位差影响下的公路隧道施工通风优化研究——以中梁山瓦斯隧道为例

杨乾1, 李建铭2, 胡彪1, 张学富2, 熊成余1, 李林杰2, *   

  1. 1. 中交一公局第四工程有限公司, 广西 南宁 530000; 2. 重庆交通大学土木工程学院, 重庆 400074
  • 出版日期:2025-07-15 发布日期:2025-07-15
  • 作者简介:杨乾(1979—),男,贵州德江人,2002年毕业于重庆交通大学,土木工程专业,本科,高级工程师,现从事路桥施工工作。E-mail: 657058690@qq.com。 *通信作者: 李林杰, E-mail: lilj@cqjtu.cn。

Ventilation Optimization for Highway Tunnel Construction Affected by Thermal Potential Difference in Inclined Shafts: A Case Study of Zhongliangshan Gas Tunnel

YANG Qian1, LI Jianming2, HU Biao1, ZHANG Xuefu2, XIONG Chengyu1, LI Linjie2, *   

  1. (1. The Fourth Engineering Co., Ltd. of CCCC First Highway Engineering Co., Ltd., Nanning 530000, Guangxi, China; 2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)

  • Online:2025-07-15 Published:2025-07-15

摘要: 为探究利用斜井热位差优化公路隧道施工通风的方法,提高隧道施工的安全性,以重庆市北碚区中梁山瓦斯隧道为例,采用理论分析与数值模拟相结合的方法进行研究。首先分析隧道内外温差及斜井坡度引起的热位差对隧道通风的影响,计算夏季和冬季热位差产生的压强差,并据此分析自然风在斜井内的流动趋势; 随后建立隧道数值模型,模拟不同工况下隧道内部的风速、风向、通风死区以及瓦斯体积分数的分布情况。研究结果表明: 热位差对隧道内的通风性能具有显著影响; 在夏季,当热位差引起的自然风与射流风机风向相冲突时,会导致隧道内形成通风死区,降低通风效率,不利于瓦斯的排出。在此基础上,提出结合自然风与机械通风协同作用的通风优化方案,充分利用斜井热位差进行通风,显著提升风速和通风效率。优化后,斜井风速随着热位差的增大而增加; 同时,隧道整体平均风速也有所提升,通风死区体积大幅减少,平均瓦斯体积分数降低,能显著提高施工瓦斯隧道的安全性。

关键词: 隧道通风, 热位差, 数值模拟, 瓦斯体积分数, 通风效率

Abstract: Ventilation optimization methods for highway tunnels using thermal potential difference in inclined shafts can enhance construction safety. Therefore, a case study is conducted on the  Zhongliangshan gas tunnel in Chongqing, China, using theoretical analyses and numerical simulations. First, the influence of the temperature difference inside and outside the tunnel and the thermal potential difference caused by inclined shaft slope on tunnel ventilation is examined. The pressure differences caused by the thermal potential difference in summer and winter are calculated, and the flow trend of natural wind in the inclined shaft is analyzed accordingly. Then, a numerical model is established to simulate the distributions of wind speed, wind direction, ventilation blind zones, and gas concentration in the tunnel under different working conditions. The research results show the following: (1) The thermal potential difference considerably affect the ventilation performance in tunnel. (2) In summer, the natural wind caused by the thermal potential difference conflicts with the wind direction of the jet fan, leading to formation of ventilation blind zones and reduction in ventilation efficiency, which is unfavorable for gas discharge. Based on such results, a ventilation optimization scheme combining natural wind and mechanical ventilation is proposed. This scheme makes full use of the thermal potential difference of the inclined shaft for ventilation, significantly improving wind speed and ventilation efficiency. After optimization, the wind speed in the inclined shaft increases with increasing thermal potential difference; the overall average wind speed in tunnel increases subsequently, reducing the ventilation blind zones and the average gas concentration, thus significantly improving the safety of the construction gas tunnel.

Key words: tunnel ventilation, thermal potential difference, numerical simulation, gas concentration, ventilation efficiency