• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 335-346.DOI: 10.3973/j.issn.2096-4498.2025.S2.030

• 施工技术 • 上一篇    下一篇

盾构下穿河流对土体和防洪墙影响及控制措施

张龙保1, 刘畅2, 3, *, 李东4, 刘强2, 李乐1, 徐文昊4, 程长广4, 王瀚2   

  1. (1. 中国建筑第八工程局有限公司, 天津 300450; 2. 天津大学建筑工程学院, 天津 300072; 3. 滨海土木工程结构与安全教育部重点实验室, 天津 300072; 4. 天津泰达城市轨道投资发展有限公司, 天津 300450)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:张龙保(1990—),男,河北邯郸人,2014年毕业于郑州大学,土木工程专业,本科,高级工程师,主要从事轨道交通工程研究工作。E-mail:948829636@qq.com。*通信作者:刘畅,E-mail:lclc74@163.com。

Impact of Shield Tunneling Underneath Rivers on Soil and Flood Control Walls and Control Measures

ZHANG Longbao1, LIU Chang2, 3, *, LI Dong4, LIU Qiang2, LI Le1, XU Wenhao4, CHENG Changguang4, WANG Han2   

  1. (1. China Construction Eighth Engineering Division Corp., Ltd., Tianjin 300450, China; 2. School of Civil Engineering, Tianjin University, Tianjin 300072, China; 3. Key Laboratory of Coast Civil Structure Safety, the Ministry of Education, Tianjin 300072, China; 4. Tianjin TEDA Urban Rail Transit Investment Development Co., Ltd., Tianjin 300450, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 针对盾构下穿河流施工易引发土体变形、地表沉降,甚至破坏河堤与防洪墙防汛结构稳定性的难题,为明确该过程中土体与防洪墙的变形规律,揭示施工参数对变形的影响机制,提出科学有效的施工控制方案以保障工程安全,依托天津滨海新区轨道Z4线某区间地铁盾构隧道穿越海河工程,根据实测数据分析盾构隧道穿越引起地表、深层土体以及防洪墙变形特征,采用有限元软件ABAQUS建立盾构施工过程模型,研究土舱压力和注浆压力等施工参数的影响,并结合盾构穿越海河的工程经验以及数值模拟结果,对土压平衡盾构穿越海河提出过程控制建议。研究结果表明: 1)河床沉降大于地表沉降,防洪墙沉降最小; 2)防洪墙顶部的沉降槽大体上呈高斯正态分布; 3)防洪墙会向隧道掘进方向产生水平位移,发生后仰倾斜,最大斜率为0.000 2; 4)盾构施工会使防洪墙内力产生重分布,防洪墙受力与两端固定的梁受均布荷载时的受力比较相似,将防洪墙简化为梁,防洪墙最大轴力和最大弯矩分别增加7 589 N和841 kN•m; 5)增大土舱压力有利于减小防洪墙和河床沉降,但当土舱压力增大到一定程度时对沉降控制的影响有限,注浆压力对沉降控制的影响相对土舱压力较小; 6)盾构在下穿河道时可通过合理设定施工参数,加强盾尾油脂压注,加强检修,避免在河底位置停机,确保盾构顺利下穿河底。

关键词: 盾构隧道, 河床沉降, 防洪墙变形, 土舱压力, 注浆压力, 控制措施

Abstract: Shield tunneling beneath rivers poses various engineering challenges such as soil deformation, surface settlement, and instability threat to river embankments and flood-control walls. To clarify the deformation patterns of soil and flood-control walls during such construction and elucidate the influence mechanisms of construction parameters on deformation, the deformation characteristics of the surface, deep soil layers, and flood walls induced by shield tunneling through the Haihe river of a section of the Tianjin Binhai New Area rail transit line Z4 are analyzed based on actual measurement data. A shield construction process model is established using the finite element software ABAQUS to examine the influence of construction parameters such as soil chamber pressure and grouting pressure. Finally, process control suggestions are proposed for soil pressure balance shield tunneling crossing the Haihe river based on engineering experience and numerical simulation results. The research results indicate the following: (1)  Riverbed settlement is greater than surface settlement, and the settlement of flood control walls is the smallest. (2) The settlement trough at the top of the flood control wall generally follows a Gaussian normal distribution. (3) The flood control wall will experience horizontal displacement towards the direction of tunnel excavation, resulting in a backward tilt with a maximum slope of 0.000 2. (4) The shield tunneling causes a redistribution of internal forces in the flood control wall. The stress on the flood control wall is similar to that of the beam fixed at both ends when subjected to uniformly distributed loads. By simplifying the flood control wall to a beam, the maximum axial force and maximum bending moment of the flood control wall increases by 7 589 N and 841 kN•m, respectively. (5) Increasing the pressure of the soil chamber is beneficial for reducing the settlement of flood control walls and riverbeds, but when the pressure of the soil silo increases to a certain extent, further increases have a limited effect on settlement control, and the effect of grouting pressure on settlement control is relatively small compared to the pressure of the soil chamber. (6) Setting reasonable construction parameters, strengthening oil pressure injection at shield tail and maintenance avoid shield stop at the bottom of the river, and thus ensuring smooth passage of the shield when passing through rivers.

Key words: shield tunnel, riverbed subsidence, deformation of flood control walls, soil chamber pressure, grouting pressure, control measures