• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2021, Vol. 41 ›› Issue (S1): 199-.DOI: 10.3973/j.issn.2096-4498.2021.S1.025

• 研究与探索 • 上一篇    下一篇

深埋富水岩体隧道三台阶法施工数值模拟和参数优化——以正盘台隧道工程为例

林可夫, 项彦勇*   

  1. (北京交通大学土木建筑工程学院, 北京 100044
  • 出版日期:2021-07-30 发布日期:2021-08-28
  • 作者简介:林可夫(1993—),男,海南文昌人,北京交通大学土木工程专业在读硕士,研究方向为隧道与地下工程。E-mail: 18121077@bjtu.edu.cn。*通信作者: 项彦勇, E-mail: yyxiang@bjtu.edu.cn。

Numerical Modeling and Parametric Optimization of ThreeBench Construction Method for Zhengpantai Deep Tunnel in WaterRich Rocks

LIN Kefu, XIANG Yanyong*   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Online:2021-07-30 Published:2021-08-28

摘要: 为解决深埋富水岩体隧道三台阶法施工参数优化问题,以崇礼高速铁路正盘台隧道三台阶法施工参数优化为例,以上台阶开挖高度、上台阶长度、下台阶长度和单步开挖进尺为参数,采用三水平流固耦合数值模拟正交试验,进行围岩稳定性分析和参数优化。计算结果表明: 1)上台阶开挖高度对拱顶下沉、侧墙水平位移、开挖面挤出位移、塑性区范围的影响最显著。2)Ⅳ级围岩地段,上台阶开挖高度取开挖跨度的27.8%,约为4 m; 上台阶长度和下台阶长度均取开挖跨度的55.6%,约为8 m; 单步开挖进尺取开挖跨度的20.8%,约为3 m

关键词:

深埋富水岩体隧道, 三台阶法, 围岩稳定性, 参数优化, 流固耦合数值模拟, 正交试验

Abstract:

To conduct parameter optimization for threebench construction method of tunnels in deep waterrich rocks, the Zhengpantai tunnel of the Chongli highspeed railway is taken for an example to carry out surrounding rock stability analysis and parameter optimization using three level orthogonal tests of fluidsolid coupling numerical simulation considering the height of the heading, the length of the upper bench, the length of the lower bench, and the advancement step length as the parameters. The results show that: (1) The height of heading has an obvious influence on the crown settlement, the wall displacement, the intrusive displacement of the face, and the scope of the plastic zone. (2) In the grade rocks, the excavation height of the upper bench is 27.8% of the excavation span, reaching 4 m, and the upper bench and the lower bench length is 55.6% of the excavation span, reaching 8 m, and the length of advancement step is 20.8% of the excavation span, reaching 3 m.

Key words: deep waterrich rock tunnel, three-bench construction method, surrounding rock stability, parameter optimization, fluidsolid coupling numerical simulation, orthogonal test

中图分类号: