• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (11): 2044-2052.DOI: 10.3973/j.issn.2096-4498.2025.11.006

• 研究与探索 • 上一篇    下一篇

基于三维点云非对称变形解算的盾构隧道注浆整治效果评价

周鸣亮1, 陈轩杰1,*, 仉文岗2, 邵华3, 叶振威1, 周群3, 张东明1   

  1. (1. 同济大学地下建筑与工程系, 上海 200092; 2. 山地城镇建设与新技术教育部重点实验室, 重庆 400045;3. 上海地铁维护保障有限公司, 上海 200235)
  • 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:周鸣亮(1988—),男,江苏启东人,2016年毕业于英国剑桥大学,土木工程专业,博士,副教授,现主要从事隧道工程安全防灾研究。E-mail: zhoum@tongji.edu.cn。*通信作者: 陈轩杰, E-mail: 2430898@tongji.edu.cn。

Grouting Treatment Effect Evaluation in Shield Tunnels Using Asymmetric Deformation Solution Method

ZHOU Mingliang1, CHEN Xuanjie1, *, ZHANG Wengang2, SHAO Hua3, YE Zhenwei1, ZHOU Qun3, ZHANG Dongming1   

  1. (1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Ministry of Education Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing 400045, China; 3. Shanghai Metro Maintenance Co., Ltd., Shanghai 200235, China)
  • Online:2025-11-20 Published:2025-11-20

摘要: 为应对现有以水平收敛为单一控制指标的注浆方法难以满足非对称变形盾构隧道精细化整治需求的问题,建立一种基于非对称变形解算的盾构隧道注浆整治效果评价方法,从机制上揭示注浆整治对隧道非对称变形的影响规律。通过采集盾构隧道注浆整治前后的三维激光扫描点云数据,采用点云去噪、管片分割等处理方法,实现分段圆弧拟合解算隧道全断面变形,快速获取隧道水平收敛、管片错台、接缝宽度等指标,提出以隧道管片左、右侧相对落底块圆心的水平变形差值IH和相对值iH为核心的非对称变形评价指标体系,用于量化表征隧道横断面变形的不对称程度,并结合实例进行注浆整治效果评价。隧道注浆整治案例的非对称变形解算结果表明,注浆整治中若只将水平收敛恢复至控制范围内作为控制指标,会造成隧道管片接缝宽度在注浆后相较注浆前增加约21%,并引发隧道的非对称变形,对隧道结构安全造成影响。因此,通过对隧道断面非对称变形的量化表征,可以克服传统水平收敛方法仅反映单一维度变形的局限性。

关键词: 盾构隧道, 点云解算, 非对称变形, 注浆整治评价

Abstract:  Current grouting-treatment projects for shield tunnels overly rely on a single indicator—horizontal convergence—precluding comprehensive and accurate evaluations of how the grouting treatment affects the asymmetric deformation of shield tunnels. To resolve this problem, the present authors incorporate asymmetric calculations into a method that evaluates the effectiveness of tunnel-grouting treatments. The method collects three-dimensional laser scanning point-cloud data of shield tunnels before and after grouting, denoises the point cloud, and applies segmentation methods. The full-section deformation of the tunnel is then calculated through multi-arc fitting, quickly acquiring indicators such as horizontal convergence, joint opening, and joint dislocation of the tunnel. Next, the authors propose an asymmetric deformation evaluation-index system based on the horizontal deformation difference IH and the relative value iH between the left and right sides of the tunnel segment and the center of the falling block. The calculated indices quantitatively characterize the asymmetry degree of tunnel cross-sectional deformation. In case-studies of the grouting treatment effect, the asymmetric deformation calculation using horizontal convergence as the sole evaluation criterion yields a 21% higher joint width of the tunnel segments after grouting than before grouting, leading to asymmetric deformation of the tunnel and threatening its structural safety.

Key words: shield tunnel, point-cloud solution, asymmetric deformation, grouting treatment evaluation