• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (S2): 236-248.DOI: 10.3973/j.issn.2096-4498.2025.S2.021

• 研究与探索 • 上一篇    下一篇

长距离隧道盾构掘进姿态在线预测

江洪月1, 王帆1, 王志华2, *, 翟仕佶3   

  1. (1. 华中科技大学土木与水利工程学院, 湖北 武汉 430074; 2. 上海隧道工程有限公司, 上海 200001; 3. 国科大杭州高等研究院智能科学与技术学院, 浙江 杭州 310024)
  • 出版日期:2025-12-20 发布日期:2025-12-20
  • 作者简介:江洪月(1998—),男,安徽芜湖人,华中科技大学土木水利专业在读博士,研究方向为地下工程的多场耦合问题。E-mail: D202480748@hust.edu.cn。*通信作者: 王志华, E-mail: 1046009@qq.com。

Online Prediction of Shield Attitude for Long-Distance Tunneling

JIANG Hongyue1, WANG Fan1, WANG Zhihua2, *, ZHAI Shiji3   

  1. (1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; 2. Shanghai Tunneling Engineering Co., Ltd., Shanghai 200001, China; 3. School of Intelligent Science and Technology, Hangzhou Institute for Advanced Study,  UCAS, Hangzhou 310024, Zhejiang, China)
  • Online:2025-12-20 Published:2025-12-20

摘要: 为解决长距离隧道掘进过程中地质条件变化导致传统姿态预测方法难以实时更新的问题,构建一种基于增量集成双向长短时记忆网络(BiLSTM)的盾构姿态在线预测模型。通过实时学习新数据,动态更新模型权重,克服传统离线模型难以适应复杂地质条件变化的局限性。采用杭州地铁6号线北线101—450环盾构掘进数据,将旧数据通过核均值匹配(KMM)算法筛选并赋权后,与新数据合并形成数据集,以上一阶段模型为基础进行迁移学习生成弱学习器,并通过集成算法将多个弱学习器组合为强学习器进行预测。当弱学习器数量超过5个时,剔除性能最差的弱学习器,确保模型在保证精度的同时控制计算复杂度,满足实时更新需求。试验结果表明,该方法在地质条件突变段(401—450环)能够显著降低姿态预测误差,相较于传统离线模型,均方根误差(ERMS)降低44.52%,同时训练效率提升98.10%;此外,模型在不同阶段均保持较高的预测精度,尤其在复杂地质条件下展现了良好的自适应性与鲁棒性。

关键词: 隧道, 盾构姿态, 在线预测, 时间序列, 知识迁移, 集成学习, LSTM

Abstract: When applying traditional attitude prediction methods in long-distance tunneling of shield, real-time update cannot be achieved due to changing geological conditions. To address this issue, an online shield attitude prediction model based on an incremental ensemble bidirectional long short-term memory network is developed. By learning new data in real time and dynamically updating model weights, the proposed method overcomes the limitations of traditional offline models in adapting to complex geological changes. Based on the shield boring data from rings 101 to 450 of the Hangzhou metro line 6, the historical data were filtered and weighted through the kernel mean matching algorithm, which were then combined with new data to form a dataset. Based on the previous-stage model, weak learners were generated through transfer learning, which were further combined into a strong learner using an ensemble algorithm. When the number of weak learners exceeded five, the weakest-performing learner was eliminated to ensure that the model maintained accuracy while controlling computational complexity, thereby meeting real-time updating requirements. The experimental results demonstrate that the proposed method considerably reduces attitude prediction error in segments with abrupt geological changes (rings 401-450), with the root mean square error reduced by 44.52% compared to traditional offline models, while training efficiency improved by 98.10%. Moreover, the model maintained high prediction accuracy across different stages and exhibited strong adaptability and robustness under complex geological conditions.

Key words: tunnel,  , shield posture, online prediction, time series, knowledge transfer, ensemble learning, long short-term memory