• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2021, Vol. 41 ›› Issue (2): 185-198.DOI: 10.3973/j.issn.2096-4498.2021.02.004

• 研究与探索 • 上一篇    下一篇

单跨5车道公路隧道过渡“3+2”小净距隧道施工力学研究

张俊儒1, 王智勇1, 龚彦峰2, 徐向东2, 张航2, 叶伦1   

  1. 1. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031;2. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063)

  • 出版日期:2021-02-20 发布日期:2021-03-05
  • 作者简介:张俊儒(1978—),男,山西神池人,2007年毕业于西南交通大学,桥梁与隧道工程专业,博士,副教授,现主要从事隧道围岩稳定性和支护理论研究工作。E-mail: jrzh@swjtu.edu.cn。
  • 基金资助:
    中铁第四勘察设计院集团有限公司科技项目(2018K038

Construction Mechanics of Transition Connection between a SingleSpan

FiveLane Highway Tunnel and Small ClearDistance Tunnel with

ThreeLane Main Tunnel and TwoLane Ramp

ZHANG Junru1, WANG Zhiyong1, GONG Yanfeng2, XU Xiangdong2, ZHANG Hang2, YE Lun1   

  1. (1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China)

  • Online:2021-02-20 Published:2021-03-05

摘要:

摘要: 〖HT5”SS〗

厦门芦澳路与海沧疏港通道交叉处拟建一座地下互通式立交隧道,隧道分岔处由单洞5车道大跨段直接过渡至主洞3车道及匝道2车道的“3+2”小净距段,采取直接过渡的方式不设置连拱段,最大开挖跨度达到30.46 m,最大开挖面积达450.41 m2。分岔隧道由大跨段直接过渡到小净距段决定了施工过程中非常复杂的工序转化,施工力学机制难以把控,分岔隧道围岩应力受隧道净距和断面形式的影响,分岔隧道的施工与支护结构设计面临诸多难题。通过三轴试验结合数值分析的方法对大跨段与小净距段交界处以及小净距隧道的施工力学进行研究,得出如下结论: 1)现场取得的花岗岩试样属于弹脆性岩石,岩石处于三向受力状态时岩石强度和稳定性远大于双向受力状态,花岗岩试样弹性模量与围压呈正相关,结合Hoek-Brown强度准则以及Mohr-Coulomb强度准则对三轴试验结果进行修正得到现场岩体的物理力学参数。 2)分岔隧道大跨段过渡至小净距段施工时,应及时对大跨段与小净距段交界面处围岩进行封闭,建议采用高性能喷射混凝土和工字钢支护,保证围岩尽快处于三向受力状态。3)小净距段隧道开挖对大跨段末端断面位移的影响主要是竖直方向,同时也会引起大跨段隧道末端初期支护不同程度的内力变化,其中左右拱脚处内力变化最为剧烈。主洞隧道施工对大跨段隧道内力和位移影响范围为掌子面后16 m,匝道则为掌子面后12 m 4)小净距段施工时,主洞和匝道隧道最佳纵向开挖间距为16 m;当主匝隧道净距大于6 m时,可作为独立单洞进行设计和施工。

关键词: 公路隧道, 小净距隧道, 大跨, 施工力学, 地下立交, 三轴试验, 数值模拟

Abstract: An underground interchange tunnel is proposed to be built at the intersection of Lu′ao Road and Haicang Shugang channel in Xiamen. The tunnel bifurcation directly transitions from a singlehole fivelane largespan section to a small cleardistance section of the main tunnel with three lanes and a ramp with two lanes. The directtransition method is adopted without a multiarch section. The maximum excavation span reaches 30.46 m, and the maximum excavation area reaches 450.41 m2. The design of the construction and supporting structure of the bifurcated tunnel suffers from many difficulties. First, the direct transition of the bifurcated tunnel from the longspan section to the small cleardistance section results in complicated process transformation during the construction process as well as in difficult control of the construction mechanics. Second, the surroundingrock stress of the bifurcated tunnel is affected by the clear distance of the tunnel and its crosssectional form. Thus, triaxial test and numerical analysis are conducted to investigate the construction mechanics of the junction between the largespan and small cleardistance sections and the small cleardistance tunnel. The following conclusions are drawn. (1) The granite samples collected on site are elastic and brittle rocks. The strength and stability of the rock in a triaxialstress state are much greater than those in a biaxialstress state. The elastic modulus of the granite sample is positively correlated to the confining pressure. The HoekBrown and MohrCoulomb strength criteria are used to modify the triaxial test results to obtain the physical and mechanical parameters of the rock mass. (2) The surrounding rock at the junction between the largespan and small cleardistance sections will ultimately be sealed. It is recommended to use highperformance shotcrete and an Ibeam support to ensure that the surrounding rock will enter the triaxialstress state as soon as possible. (3) Tunnel excavation in the small cleardistance section mainly affects the crosssectional displacement at the end of the largespan section along the vertical direction, and it causes different degrees of internalforce changes at the end of the largespan tunnel. The internal force changes at the left and right arch feet are the most dramatic. The influence range of the maintunnel construction on the internal force and displacement of the largespan tunnel is 16 m behind the tunnel face, and that of the ramp is 12 m behind the tunnel face. (4) During the construction of the small cleardistance section, the optimal longitudinal excavation distance between the main and ramp tunnels is 16 m. When the clear distance between the main and ramp tunnels is more than 6 m, they can be designed and constructed as independent single tunnels.

Key words: highway tunnel, small cleardistance tunnel, large span, construction mechanics, underground interchange, triaxial test, numerical simulation

中图分类号: