• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (12): 2500-2509.DOI: 10.3973/j.issn.2096-4498.2024.12.017

• 规划与设计 • 上一篇    下一篇

隧道洞口边仰坡智能设计方法初探

戴林发宝1 2, 陈韶平1 2, 杨剑1 2, 孙文昊1 2, 吴佳明1 2, 杨辉1 2   

  1. 1. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063 2. 水下隧道技术国家地方联合工程研究中心, 湖北 武汉 430063
  • 出版日期:2024-12-20 发布日期:2025-01-11
  • 作者简介:戴林发宝(1984—),男,福建长汀人,2011年毕业于西南交通大学,桥梁与隧道工程专业,硕士,正高级工程师,现从事隧道数智化设计技术及应用研究工作。E-mail: 275283120@qq.com

Intelligent Design Methods for Tunnel Portal Slopes

DAI Linfabao1, 2, CHEN Shaoping1, 2, YANG Jian1, 2, SUN Wenhao1, 2, WU Jiaming1, 2, YANG Hui1, 2   

  1. (1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 2. National & Local Joint Engineering Research Center of Underwater Tunnelling Technology, Wuhan 430063, Hubei, China)

  • Online:2024-12-20 Published:2025-01-11

摘要: 为解决隧道洞口工程的边仰坡设计在传统二维方式中面临精度控制困难、参数化与自动化程度低以及缺乏空间关系等问题,提出一种基于参数化、三维化和智能化理念的隧道洞口边仰坡三维智能设计方案。首先,建立隧道洞口边仰坡设计案例数据库,利用深度学习算法智能确定洞口明暗分界里程与边仰坡开挖参数;其次,引入基于弧面的边仰坡过渡方式,应用群体智能算法优化控制性过渡断面的选择,通过计算开挖控制点并进行曲面缝合,构建边仰坡整体开挖模型;最后,将该模型与周边地形进行布尔运算,以实现开挖边界、工程量等设计成果的精确计算和自动输出。以长赣铁路为实例进行应用分析的结果表明: 相比于传统设计方式,由智能推荐得到的设计方案具备较高可信度,且显著失真的开挖线减少28.0%,工程量计算准确率平均提升8.7%,能够有效改善隧道洞口边仰坡设计的效率和质量。

关键词: 隧道洞口设计, 边仰坡, 参数化, 智能化, 深度学习

Abstract: The traditional two-dimensional design method for the side and front slopes of tunnel portal projects face some challenges, such as difficulties in quality control, low parameterization and automation, and a lack of spatial relationship. To address these problems, a design scheme for tunnel portal slopes based on parametric, three-dimensional, and intelligent concepts is proposed. Initially, a database of tunnel portal slope design cases is established; further, a deep learning algorithm is employed to intelligently determine the portal boundary mileage and excavation parameters of the tunnel portal slope. Subsequently, a slope transition mode based on a curved surface is introduced, a swarm intelligence algorithm is applied to optimize the selection of controlling transition sections, and excavation control points are estimated to stitch them into a mesh, thereby establishing a slope excavation model. Finally, the integrated slope excavation model and terrain model are subjected to Boolean operations to determine the boundary and quantities of excavation accurately and automatically. A case study conducted on the Changsha-Ganzhou railway using the proposed method reveals that compared with the traditional method, the design scheme obtained via intelligent recommendations exhibits high reliability, a reduction in the excavation boundaries with notable distortion by 28.0%, and an increase in the average accuracy rate of excavation quantities by 8.7%. These results confirm that the proposed method improves the efficiency and quality of the tunnel portal slope design.

Key words: tunnel portal design, side and front slopes, parametric design, intelligentization, deep learning