• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2019, Vol. 39 ›› Issue (S2): 154-162.DOI: 10.3973/j.issn.2096-4498.2019.S2.020

• 研究与探索 • 上一篇    下一篇

纵向力对盾构隧道管片结构内力分配机制的影响分析 ———以苏通GIL 电力管廊隧道工程为例

曹淞宇1, 封 坤1, ∗, 刘 迅1, 肖明清2, 3, 李 策1, 孙文昊2, 3   

  1. (1. 西南交通大学 交通隧道工程教育部重点实验室, 四川 成都 610031; 2. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430071; 3. 水下隧道技术国家地方联合工程研究中心, 湖北 武汉 430071)
  • 收稿日期:2019-08-05 出版日期:2019-12-31 发布日期:2020-04-04
  • 作者简介:曹淞宇(1990—),男,四川成都人,西南交通大学桥梁与隧道工程专业在读博士,研究方向为盾构隧道结构力学性能,E-mail: caosongyu111@ 163. com。?通信作者: 封坤,E-mail: windfeng813@ 163. com。
  • 基金资助:

    国家电网重点研究项目(SHJJGC1700023)

Analysis of Influence of Longitudinal Force on Internal Force Distribution Mechanism of Segments: a Case Study of Sutong GIL Power Tunnel Project

CAO Songyu1, FENG Kun1, ∗, LIU Xun1, XIAO Mingqing2, 3, LI Ce1, SUN Wenhao2, 3   

  1. (1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430071, Hubei, China; 3. National & Local Joint Engineering Research Center of Underwater Tunnel Technology, Wuhan 430071, Hubei, China)
  • Received:2019-08-05 Online:2019-12-31 Published:2020-04-04

摘要:

: 为探明施工过程中,不同纵向力及竖向荷载作用下,中间管片与两侧持环管片结构位移与内力分配的变化规律,以苏通GIL 电力管廊隧道工程为背景,采用有限元方法建立局部错缝拼装管片结构模型,对目标管片在拱顶位置受拱顶竖向均布力荷载作用下弯矩与位移的分配规律进行研究,引入环间位移分配系数与弯矩分配系数揭示在不同纵向力作用下目标管片环间弯矩与位移的分配规律,揭示纵向力与环缝接缝张开量的对应关系,探明错缝拼装管片结构弯矩与位移的分配机制。结果表明: 1)纵向力能够增加管片结构弯矩与位移的分配能力,有利于结构整体受力以及位移的整体协调性,其对结构内力分配的影响表现为非线性及阶段性,即当环间不产生接缝张开时,纵向力的增加对结构整体性影响较小; 当环间产生张开量时,纵向力的增加在一定程度上增强了管片变形及内力的分配能力。2)纵向力使目标管片与两侧管片环缝完全接触,此时控制内力分配的主要因素为环缝接触面;直观控制因素为环缝张开量与错台量,随着环缝的张开,局部结构内力逐渐由通过接缝面传递变为通过凹凸榫传递,同时结构整体内力分配能力降低。3)常规荷载作用下,随着竖向拱顶荷载增加,当环缝凹凸榫接触后,结构内力的分配逐渐趋于某一稳定值。4)实际工程中出现纵向力损失后,由于内力的重新分配,结构会出现局部位置应力集中情况,需针对该实际工况予以特殊考虑。

关键词: 盾构隧道, 管片衬砌, 内力分配, 纵向力, 凹凸榫构造v

Abstract:

Based on the " Sutong GIL comprehensive pipe gallery project", the distribution of bending moment and displacement of B3 block under the vertical uniformly distributed load of the arch roof was studied by finite element software simulation. Displacement distribution coefficient and moment distribution coefficient are introduced to reveal the distribution of bending moment and displacement of B3 block under different longitudinal forces. The research reveals the corresponding relationship between longitudinal force and joints open amount and explores the distribution mechanism of bending moment and displacement. The results show that: (1) Longitudinal force can increase the distribution of bending moment and displacement of the segments, but the distribution of longitudinal force towards the internal force of the structure is nonlinear and phased, when no joint opening exist, the increase of longitudinal force can barely impact on the distribution of internal force and deformation for the segments, while when joint opening is observed, the distribution will be increased to some extent with the increase of longitudinal force. (2) The contact surface of the joint can be sufficiently contacted under the effect of longitudinal force, the main controlling factor at this time is the contact surface. The direct controlling factor is joint opening and dislocation. With the opening of circumferential joints, the internal force of the structure is transferred through the tenon structure instead of the contact surface, and as a result, the distribution capacity of the overall internal force of the structure decreases. (3) Under normal load, with the increase of vertical load, the internal force distribution capacity of the structure tends to be stable after the contact of tenon and mortise. (4) In practical engineering, when loss of longitudinal force happens, partial stress concentration of the structure will occur due to the redistribution of internal force, in consequence, particular consideration should be provided for the project.

Key words: shield tunnel, segment lining, internal force distribution, longitudinal force, tenon structure

中图分类号: