• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (1): 151-158.DOI: 10.3973/j.issn.2096-4498.2025.01.012

• 研究与探索 • 上一篇    下一篇

设置纳米流体阻尼器的沉管隧道管节接头耗能特性数值模拟研究

孟庆旭1, 苏雷1, *, 黄俊超1, 郑烨炜2, 陈炜昀3, 凌贤长1, 4   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266520 2. 武汉大学土木建筑工程学院,湖北 武汉 430072; 3. 中山大学土木工程学院, 广东 珠海 519082;4. 哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090)

  • 出版日期:2025-01-20 发布日期:2025-01-20
  • 作者简介:孟庆旭(1999—),男,山东德州人,青岛理工大学土木水利专业在读硕士,〖JP3〗研究方向为岩土地震工程。 E-mail: mengqingxu2532@163.com。 *通信作者: 苏雷, E-mail: sulei@qut.edu.cn。

Numerical Simulation of Energy Dissipation Characteristics in Immersed Tunnel  Segment Joints With Nanofluidic Dampers

MENG Qingxu1, SU Lei1, *, HUANG Junchao1, ZHENG Yewei2, CHEN Weiyun3, LING Xianzhang1, 4   

  1. (1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China; 2. School of Civil Engineering, Wuhan University, Wuhan 430072, Hubei, China; 3. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China; 4. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China)

  • Online:2025-01-20 Published:2025-01-20

摘要: 沉管隧道接头刚度相对较小,在地震作用下极易产生大变形,对沉管隧道的安全造成威胁。过去研究表明: 在管节接头布置减震耗能装置可以降低隧道接头的动力响应,减轻隧道震害。鉴于此,为探索设置纳米流体阻尼器的沉管隧道管节接头的耗能特性,首先,采用一种基于纳米流体材料的新型阻尼器,将其设置在沉管隧道管节接头处; 然后,基于开源有限元数值计算平台OpenSees,通过定义节点代表管节接头两端的刚端头,通过定义连接两侧节点的非线性弹簧模拟GINA止水带和剪力键,从而建立管节接头三维简化力学模型,表明该接头模型可以较好地反映管节接头的受力特点; 最后,针对设置与不设置纳米流体阻尼器2种工况对比管节接头耗能特性的影响。结果表明: 1)采用等效弹簧模型可以有效地模拟沉管隧道管节接头各部分的非线性特性; 2)与不设置阻尼器相比,设置纳米流体阻尼器后,沉管隧道管节接头耗能明显增大,垂直/水平剪力键承载力显著提高,轴向刚度明显增加。

关键词: 沉管隧道, 管节接头, 纳米流体阻尼器, 耗能特性

Abstract: Joints in immersed tunnels typically exhibit low stiffness and are prone to significant deformation during earthquakes, posing serious risks to tunnel safety. Previous studies have demonstrated that dampers can effectively reduce the dynamic response and earthquake-induced damage to segment joints. The authors propose a novel damper utilizing nanofluidic material, designed to enhance the energy dissipation characteristics of immersed tunnel segment joints. Using the open-source finite element computational platform OpenSees, a three-dimensional simplified mechanical model of the joint is developed. In this model, the rigid end heads on both sides of the joint are represented using defined nodes, while the GINA gasket and shear keys are simulated using nonlinear springs connecting these nodes. The model accurately describes the mechanical behavior of the joint. The authors further compare the energy dissipation characteristics of joints with and without the nanofluidic damper. The results reveal the following: (1) The equivalent spring model effectively simulates the nonlinear behavior of various components within the immersed tunnel joint. (2) The inclusion of the nanofluidic damper significantly enhances the joints energy dissipation capacity, improves the performance of vertical and horizontal shear keys, and markedly increases the axial stiffness of the joint.

Key words: immersed tunnel, segment joint, nanofluidic dampers, energy dissipation characteristics