• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (5): 847-855.DOI: 10.3973/j.issn.2096-4498.2023.05.012

• 施工技术 • 上一篇    下一篇

基于摩擦力止推的沉管隧道最终接头关键技术创新与实践

曾波存1, 封江东1, 周兴涛2*, 王聪1, 3, 孙晓伟1, 任耀谱4   

  1. (1.中交第二航务工程局有限公司, 湖北 武汉 430040;2. 湖北文理学院土木工程与建筑学院, 湖北 襄阳 441053; 3. 长大桥梁建设施工技术交通行业重点试验室, 湖北 武汉 430040; 4. 中交公路规划设计院有限公司, 北京 100088)

  • 出版日期:2023-05-20 发布日期:2023-06-20
  • 作者简介:曾波存(1987—),男,湖北麻城人,2011年毕业于安徽理工大学,土木工程专业,硕士,高级工程师,现从事隧道施工管理工作。Email: 296617295@qq.com。*通信作者: 周兴涛, Email: 525017432@qq.com。

Innovation and Practice of Key Technologies for Immersed Tunnel Terminal Joint Based on Friction Antithrust

ZENG Bocun1, FENG Jiangdong1, ZHOU Xingtao2, *, WANG Cong1, 3, SUN Xiaowei1, REN Yaopu4   

  1. (1.CCCC Second Harbour Engineering Co.,Ltd.,Wuhan 430040,Hubei,China;2.School of Civil Engineering and Architecture,Hubei University of Arts and Science,Xiangyang 441053,Hubei,China;3.Key Laboratory of Large-span Bridge Construction Technology of Ministry of Communications,Wuhan 430040,Hubei,China;4.CCCC Highway Consultants Co.,Ltd.,Beijing 100088,China)

  • Online:2023-05-20 Published:2023-06-20

摘要: 为解决当前沉管隧道最终接头施工中存在的水下作业工序多、施工工艺复杂、水下止推结构质量检测难度大等难题,依托襄阳汉江沉管隧道工程,提出基于摩擦力止推的最终接头施工工艺。利用隧道管节与周边地层间的摩擦力及管节接头处安装临时限位结构的拉力,补偿干坞抽水过程中最终管节尾部所消散的水压力,确保隧道管节的安全稳定; 并建立隧道管节总止推力与总推力的计算方法。研究结果表明: 1)当管节顶部回填压重后,在E1/E2E2/E3接头处设置临时精轧螺纹钢连接措施,可有效利用管节与周边砂卵石地层间的摩擦力,防止受压缩的Gina止水带回弹,确保单个及整体管节单元的安全稳定,无需在沉管隧道端部设置单独的止推结构; 2)在干坞抽水及现浇隧道施工阶段,管节接头张合量及临时精轧螺纹钢轴力监测数据较为稳定,与计算结果基本一致,验证了所提出的基于摩擦力止推的沉管隧道最终接头技术是可行的。

关键词:  , 沉管隧道, 最终接头, 摩擦力止推, 临时精轧螺纹钢

Abstract: The existing terminal joint construction of an immersed tunnel is challenging due to multiple underwater operation procedures, complex construction technology, and difficult quality detection of underwater antithrust structure. To address these issues, a case study is conducted on the Hanjiang river immersed tunnel in Xiangyang, China, and a novel immersed tunnel terminal joint construction technique is proposed based on the concept of friction antithrust. This technique exploits the friction force between the tunnel elements and the surrounding stratum as well as the tension force of the temporary finish rolled steel bar installed at the element joints to compensate for the water pressure dissipated at the end of the final tunnel element, guaranteeing the safety and stability of the tunnel elements. Furthermore, the calculation methods for the total antithrust and thrust forces of the tunnel element are established. The research results reveal the following: (1) When the top of the tunnel elements is backfilled, the connection measure of setting up temporary finish rolled steel bars at the E1/E2 and E2/E3 joints is adopted, effectively exploiting the friction force between the tunnel elements and the surrounding sandgravel strata, and preventing the compressed Gina waterstop from bouncing back; thus, the safety and stability of tunnel elements can be ensured and a separate antithrust structure need not be set at the end of the immersed tunnel. (2) During dry dock pumping and castinplace tunnel construction, monitoring data of the opening and closing amount of tunnel element joints and the axial force of the temporary finish rolled steel bars are relatively stable and consistent with the calculation results; furthermore, the feasibility of the proposed terminal joint construction technique for the immersed tunnels based on friction antithrust is validated.

Key words: immersed tunnel, terminal joint, friction antithrust, temporary finish rolled steel bars