• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (5): 933-943.DOI: 10.3973/j.issn.2096-4498.2025.05.008

• 研究与探索 • 上一篇    下一篇

基于型钢套筒溢浆连接的装配式有柱地下车站整体结构受力性能推覆分析

胡天波1, 2, 徐军林3, 江佳斐2, 潘正义3, 薛伟辰2 *, 毛良根3   

  1. 1. 广西大学土木建筑工程学院, 广西 南宁 530004 2. 同济大学土木工程学院, 上海 2000923. 中铁第四勘察设计院集团有限公司,  湖北 武汉 430063
  • 出版日期:2025-05-20 发布日期:2025-05-20
  • 作者简介:胡天波(1995—),男,湖南衡阳人,广西大学结构工程专业在读博士,研究方向为新型装配式混凝土结构。E-mail: 2010401012@st.gxu.edu.cn。*通信作者: 薛伟辰, E-mail: xuewc@tongji.edu.cn。

Pushover Analysis of a Prefabricated Column-Supported Underground Station Using Steel-to-Sleeve Connections with Overflowed Grout

HU Tianbo1, 2, XU Junlin3, JIANG Jiafei2, PAN Zhengyi3, XUE Weichen2, *, MAO Lianggen3   

  1. (1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China; 2. College of Civil Engineering, Tongji University, Shanghai 200092, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China)
  • Online:2025-05-20 Published:2025-05-20

摘要: 为解决现有装配式地下车站施工效率不足的问题,提出一种基于型钢套筒溢浆连接的装配式两层两跨矩形框架有柱地下车站结构。该结构由单面叠合侧墙、现浇底板、预制中板、叠合顶板、预制混凝土柱组成。其中,侧墙纵筋采用型钢套筒溢浆连接,上下层预制柱钢筋采用套筒连接,预制柱与底板采用螺栓连接。采用可合理反映预制构造和钢筋连接特性的节点有限元模型建模方法,建立有柱地下车站的三维实体有限元模型。通过推覆分析重点研究中板与顶板预制板是否出筋以及埋深对装配式地下车站整体结构受力性能的影响,并与现浇结构进行对比。分析结果表明: 1)装配式地下车站与现浇车站均为混合铰破坏模式,塑性铰首先出现在中柱端部; 装配式地下车站与现浇车站荷载-位移曲线均分为弹性、屈服、峰值和极限4个阶段。2)在3 m埋深下,采用中板与顶板预制板受力筋靠纵梁侧不出筋的装配式车站整体结构抗侧刚度较采用出筋构造的整体结构低4.2%,但是否出筋对装配式车站整体结构的峰值承载力与延性影响不大,相差不到4%; 且装配式车站与现浇车站之间的峰值承载力、延性的差异均不超过6%3)在10 m埋深下,采用中板与顶板预制板受力筋靠纵梁侧不出筋/出筋的2种不同构造的装配式车站与现浇车站之间的承载力、延性、刚度的差异均不超过7%; 相比3 m埋深,10 m埋深下整体结构的承载力与刚度分别提高10.5%~12.7%31.8%~46.3%,但延性降低14.5%~18.7%。总体上,该装配式有柱地下车站整体结构具有良好的受力性能,中板与顶板预制板受力筋靠纵梁侧是否出筋对车站整体结构受力性能影响不大。

关键词: 装配式有柱地下车站, 型钢套筒溢浆连接, 整体结构, 推覆分析, 有限元分析, 承载力, 位移延性

Abstract: To address the low construction efficiency of existing prefabricated underground stations, the authors propose a column-supported, two-story, two-span assembled rectangular frame structure that utilizes steel-to-sleeve connections with overflowed grout technology. The structure comprises single-sided composite sidewalls, a cast-in-place bottom slab, prefabricated middle slabs, composite top slabs, and prefabricated concrete columns. The longitudinal reinforcement of the sidewalls employs steel-to-sleeve connections with overflowed grout. Meanwhile, the reinforcements of the prefabricated columns on the upper and lower floors use sleeve connections and are bolted to the bottom slab. A three-dimensional solid finite element model of the underground station was developed using a finite element modeling approach. This model accurately represents the characteristics of the prefabricated components and rebar connections. Through pushover analysis, the authors examine how the presence of embedment depth of longitudinal reinforcement extending from the middle and top prefabricated slabs into the sides of the longitudinal beams affects the mechanical performance of the prefabricated underground station. The obtained results are compared with those of a traditional cast-in-place structure. The analysis yields the following findings: (1) The prefabricated and cast-in-place underground stations exhibit a mixed hinge failure mode, with plastic hinges initially appearing at the ends of the middle columns. The load-displacement curve can be divided into four stages: elastic, yield, peak, and ultimate. (2) At a burial depth of 3 m, the overall lateral stiffness of the prefabricated structure, without extended reinforcement at the longitudinal beam sides of the middle and top slabs, is 4.2% lower than that of the structure with extended reinforcement. However, the presence of extended reinforcement has minimal effect on the peak load-bearing capacity and ductility of the prefabricated structure, with differences of <4%. Furthermore, the differences in peak load-bearing capacity and ductility between the prefabricated and cast-in-place stations are <6%. (3) At a burial depth of 10 m, the differences in load-bearing capacity, ductility, and stiffness between the prefabricated and cast-in-place structures are <7%. Compared to the structure at a 3 m depth, the structure at a 10-m depth exhibits increases of 10.5%12.7% in load-bearing capacity and 31.8%46.3% in stiffness, but a decrease of 14.5%18.7% in ductility. Overall, the proposed prefabricated underground station structure with columns demonstrates favorable mechanical performance. The extension of longitudinal reinforcement from the middle and top slabs into the longitudinal beam sides has limited impact on the overall structural behavior.

Key words: prefabricated column-supported underground station, steel-to-sleeve connection with overflowed grout, integral structure, pushover analysis, finite element analysis, bearing capacity, displacement ductility