• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2025, Vol. 45 ›› Issue (8): 1441-1450.DOI: 10.3973/j.issn.2096-4498.2025.08.002

• 研究与探索 • 上一篇    下一篇

变截面UHPC加固盾构隧道衬砌结构受力性能研究

柳献1, 甘海杰1, 洪剑宇1, 张帆1, 王金龙2, *   

  1. (1. 同济大学地下建筑与工程系, 上海 200092; 2. 中铁第四勘察设计院集团有限公司, 湖北 武汉 430063)
  • 出版日期:2025-08-20 发布日期:2025-08-20
  • 作者简介:柳献(1977—),男,湖北武汉人,2006年毕业于同济大学,结构工程专业,博士,教授,主要从事隧道及地下结构服役行为、机制与性态控制方面的研究。E-mail: xian.liu@tongji.edu.cn。*通信作者: 王金龙, E-mail: 003180@crfsdi.com。

Mechanical Performance of Shield Tunnel Lining Structures Reinforced With Ultra-High-Performance Concrete With Variable Sections

LIU Xian1, GAN Haijie1, HONG Jianyu1, ZHANG Fan1, WANG Jinlong2, *   

  1. (1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China)
  • Online:2025-08-20 Published:2025-08-20

摘要: 在使用UHPC加固盾构隧道时,不同位置UHPC层厚度不同可形成变截面加固,从而提高UHPC利用率。为研究采用变截面形式UHPC加固后衬砌结构的力学性能,开展变截面UHPC加固盾构隧道衬砌整环足尺试验,试验结构中变截面UHPC层厚度在隧道顶部和腰部为70 mm,肩部为40 mm,节省肩部UHPC用量的同时扩大了列车与结构间隙。此外基于曲梁理论建立UHPC加固盾构隧道衬砌结构计算方法,分析变截面UHPC加固盾构隧道衬砌结构的内力分配机制。结果表明: 1)变截面UHPC加固结构的破坏模式表现为UHPC开裂、粘结界面破坏,破坏过程包含弹性阶段、弹塑性阶段和塑性阶段3个阶段,呈现良好的延性特征。2)相比等截面UHPC加固方法,变截面UHPC加固结构承载力提升25.0%,可额外多承担4.1 m上覆土荷载。3)等截面UHPC加固结构表现为明显的“超筋”破坏,管片先破坏、后加固体破坏,而变截面UHPC加固结构UHPC和界面先发生破坏,后管片破坏,对于UHPC的利用率提高。4)基于曲梁理论建立的UHPC加固结构计算方法经试验结果验证正确有效,且推导得出加固界面的破坏由剪切破坏主导。

关键词: 盾构隧道, 变截面UHPC加固, 二次受力, 优化设计, 足尺试验, 加固效果

Abstract: When applying ultra-high-performance concrete (UHPC) to shield tunnel reinforcement, varying UHPC layer thickness at different positions creates a variable cross-section reinforcement, thereby improving UHPC utilization efficiency. To investigate the mechanical performance of tunnel linings reinforced with variable cross-section UHPC, a full-scale test is conducted on a shield tunnel lining. In the test structure, the UHPC layer thickness is 70 mm at the tunnel crown and mid-sides and 40 mm at the shoulders, reducing the amount of UHPC used at the shoulders while increasing the clearance between the train and structure. Moreover, a calculation method for UHPC-reinforced shield lining is established based on curved beam theory to reveal the internal force distribution mechanism. The findings are as follows: (1) The failure mode of the variable cross-section UHPC-reinforced structure is characterized by UHPC cracking and bond interface failure, encompassing three phases—elastic, elastoplastic, and plastic—demonstrating good ductility. (2) Compared with the uniform cross-section UHPC reinforcement method, the load-bearing capacity of the variable cross-section UHPC-reinforced structure increases by 25.0%, allowing for an additional 4.1 m of overburden load. (3) The uniform cross-section UHPC-reinforced structure exhibits a distinct "over-reinforcement" failure mode, where the segments fail first, followed by the reinforcement body. In contrast, in the variable cross-section structure, the UHPC and interface fail first, followed by the segments, thereby improving UHPC utilization. (4) The calculation method for UHPC-strengthened tunnel lining based on curved beam theory is thus validated as accurate and effective through experimental results, demonstrating that shear failure primarily governs the failure of the strengthened interface.

Key words: shield tunnel, variable-section ultra-high-performance concrete reinforcement, secondary loading, optimization design, full-scale test, reinforcement effect