• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2023, Vol. 43 ›› Issue (5): 745-753.

• 研究与探索 • 上一篇    下一篇

基于PSO-RF-NSGA-Ⅱ盾构下穿施工既有隧道变形预测与优化控制

王金峰   

  1.  (武汉地铁集团有限公司, 湖北 武汉〓430040)
  • 出版日期:2023-05-20 发布日期:2023-06-20
  • 作者简介:王金峰(1972—),男,湖北武汉人,1996年毕业于长沙交通学院,港口及航道工程专业,本科,教授级高级工程师,从事轨道交通建设研究工作。E-mail: wangjf@wuhanrt.com。

Prediction and Optimization Control of Deformation of Existing Tunnel Induced by Undercrossing of Shield Tunnel Based on Particle Swarm OptimizationRandom ForestNondominated Sorting Genetic Algorithm

WANG Jinfeng   

  1. (Wuhan Metro Group Co., Ltd., Wuhan 430040, Hubei, China)
  • Online:2023-05-20 Published:2023-06-20

摘要: 盾构施工引起的土体扰动与既有隧道承载力的相互作用会造成竖向和横向变形,给既有隧道的正常运行带来潜在风险。为精准预测并有效控制盾构下穿施工既有隧道变形,构建粒子群优化(particle swarm optimization, PSO)、随机森林(random forestRF)及带精英策略的非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ, NSGA-Ⅱ)多目标优化框架。基于监测的样本数据集,采用PSO-RF模型对既有隧道拱底位移进行预测,得到盾构隧道主要施工参数与拱底位移的非线性映射关系;基于构建的PSO-RF-NSGA-Ⅱ多目标优化框架,对拱底竖向位移和拱底横向位移2个目标进行优化,获得盾构施工参数的帕累托(Pareto)前沿;采用TOPSIS方法计算得到最优解,实现盾构下穿施工既有隧道变形的精准预测。结果表明,采用基于PSO-RF-NSGA-Ⅱ框架的盾构施工参数组合进行优化控制,既有隧道的拱底竖向位移和拱底横向位移分别降低了33.6%35.1%,实现了盾构下穿施工既有隧道变形的精确预测与控制。

关键词: 盾构下穿施工, 既有隧道, 变形, 多目标优化, 预测, 管控, PSO-RF-NSGA-

Abstract: The soil disturbance induced by a shield tunnel can affect the bearing capacity of the existing tunnel, and the resulting vertical and horizontal deformation of the existing tunnel poses risks to normal operation. To accurately predict and effectively control the deformation of the existing tunnel induced by the undercrossing of the shield tunnel, a multiobjective optimization framework is constructed that integrates particle swarm optimization(PSO), random forest(RF), and nondominated sorting genetic algorithm (NSGAⅡ). A monitored sample data set is used in conjunction with the PSORF model to predict the displacement at the tunnel bottom, whereby a nonlinear mapping relationship between the main construction parameters of the shield tunnel and the bottom displacement is obtained. The constructed PSORFNSGAⅡ multiobjective optimization framework is used to optimize the bottom settlement and horizontal displacement of the existing tunnel, yielding the Pareto front of the shield tunneling parameters. The TOPSIS method is used to calculate the optimal solution to accurately predict the deformation of the existing tunnel. Optimization and control using PSORFNSGAⅡ were found to reduce the bottom settlement and horizontal displacement of the existing tunnel by 33.6% and 35.1%, respectively, thus realizing accurate prediction and control of the deformation of the existing tunnel induced by undercrossing of a shield tunnel.

Key words: shield undercrossing, existing tunnel, deformation; multiobjective optimization, prediction, control, particle swarm optimizationrandom forestnondominated sorting genetic algorithm