- 中国科学引文数据库(CSCD)核心期刊
- 中文核心期刊中文科技核心期刊
- Scopus RCCSE中国权威学术期刊
- 美国EBSCO数据库 俄罗斯《文摘杂志》
- 《日本科学技术振兴机构数据库(中国)》

隧道建设(中英文) ›› 2020, Vol. 40 ›› Issue (S1): 202-208.DOI: 10.3973/j.issn.2096-4498.2020.S1.025
王开华, 杨森, 周继中, 曹其壮
Evaluation Method of Bolt Anchorage Quality Based on Convolutional Neural Network
WANG Kaihua, YANG Sen, ZHOU Jizhong, CAO Qizhuang
摘要: 锚杆的锚固质量通常使用声波反射法进行检测,然后使用人工方式对其进行分析和分类,但人工方式不仅具有较强的主观性,而且还费时费力。为解决上述问题,提出一种基于Alexnet卷积神经网络的锚杆锚固质量评估方法。首先,对已经经过人工分类的声波反射信号进行预处理,得到原始样本数据,并将其按一定比例划分为训练集和测试集; 然后,用该样本数据训练卷积神经网络模型并进行分类测试。试验结果表明: 1)该预处理方法极大地提高了最后分类的准确性,样本数据集达到了约90%的准确率; 2)在实际工程应用中,与人工分类结果相比,采用该方法得到的分类结果认可度达到95%。
中图分类号: