• 中国科学引文数据库(CSCD)来源期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国核心学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文) ›› 2020, Vol. 40 ›› Issue (S1): 321-326.DOI: 10.3973/j.issn.2096-4498.2020.S1.041

• 施工技术 • 上一篇    下一篇

大直径泥水盾构始发钢套筒的防扭施工技术——以孟加拉卡纳普里河水下隧道为例

吴忠仕1, 2, 贺祖浩1, 3, 刘文1, 4, *, 许超1, 2, 孔茜1, 5   

  1. 1.中交第二航务工程局有限公司, 湖北 武汉 430040; 2. 长大桥梁建设施工技术交通行业重点实验室, 湖北 武汉 430014; 

    3. 交通运输行业交通基础设施智能制造技术研发中心, 湖北 武汉 430014; 4. 华中科技大学土木工程与力学学院, 湖北 武汉 430074; 5. 中交公路长大桥建设国家工程研究中心有限公司, 湖北 武汉 430014)

  • 出版日期:2020-08-30 发布日期:2020-09-15
  • 作者简介:吴忠仕(1968—),男,四川安岳人,1987年毕业于上海铁道学院,铁道工程专业,本科,高级工程师,现主要从事地下工程施工工作。E-mail: 374662779@qq.com。*通信作者: 刘文, Email: 379047775@qq.com。

Torsionresistant Construction Technology for Steel Sleeve Used in Launching of Largediameter Slurry Shield: 

a Case Study of Canapuri River Tunnel in Bangladesh

WU Zhongshi1, 2, HE Zuhao1, 3, LIU Wen1, 4, *, XU Chao1, 2, KONG Qian1, 5   

  1. (1.CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, Hubei, China; 2. Key Laboratory of Long Bridge Construction Technology and Transportation Industry, Wuhan 430014, Hubei, China; 3. Transportation Infrastructure Intelligent Manufacturing Technology Research and Development Center, Wuhan 430014, Hubei, China; 4. School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; 5. China Communications Highway Long Bridge Construction National Engineering Research Center Co., Ltd., Wuhan 430014, Hubei, China)

  • Online:2020-08-30 Published:2020-09-15

摘要: 为更好地控制超大直径泥水平衡盾构始发阶段的施工风险,依托“一带一路”孟中印缅经济走廊大型基础设施项目孟加拉卡纳普里河水下隧道,采用开挖直径12.16 m超大型气垫式泥水加压平衡盾构密闭始发钢套筒进行始发。为解决当地吊装资源和远洋航运的限制,钢套筒采用分片设计。盾构在套筒内破除洞门围护结构前,须严格控制盾构掘进转矩,避免盾体及钢套筒整体扭转。对钢套筒始发整体扭转进行分析,并运用有限元仿真技术分析始发施工中的盾构钢套筒抗扭性能。研究结果表明: 钢套筒可以满足始发前后所需的抵抗转矩,最大应力为16.6 MPa,最大位移为0.52 mm,最大水平位移为0.02 mm,最大竖向位移为0.51 mm,满足盾构始发钢套筒的受力和变形验算条件。基于仿真计算结果,制定对应的超大直径盾构始发钢套筒的抗扭措施。

关键词: 海底隧道, 泥水平衡盾构, 盾构始发, 钢套筒, 有限元分析, 抗扭性能

Abstract: The construction risks in the launching stage of superlarge slurry balance shield should be controlled. As a result, the steel sleeve used in launching of a superlarge air cushion slurry pressure balance shield with a diameter of 12.16 m of the Canapuri River Tunnel Project in Bangladesh of BangladeshChinaIndiaMyanmar Economic Corridor of "the Belt and Road" is designed in sections considering the local hoisting resources and the limitation of ocean shipping. Before the shield breaks the retaining structure behind the tunnel portal in the sleeve, it is necessary to strictly control the driving torque of the shield to avoid the whole torsion of the shield body and the steel sleeve. The torsional resistance of the steel sleeve of the shield during the launching construction is analyzed by using finite element simulation technology. The results show that: (1) The steel sleeve can meet the resistance torque required for shield launching. (2) The maximum stress of the steel sleeve, the maximum displacement, the maximum horizontal displacement and the maximum vertical displacement are 16.6 MPa, 0.52 mm, 0.02 mm and 0.51 mm, respectively, which satisfies the checking conditions of the stress and deformation of the initial steel sleeve of shield tunneling. The corresponding antitorsion measures for steel sleeve launching of superlarge diameter shield are formulated based on the simulation results.

Key words: subsea tunnel, slurry balance shield, shield launching, steel sleeve, finite element analysis, torsion resistance

中图分类号: