• CSCD核心中文核心科技核心
  • RCCSE(A+)公路运输高质量期刊T1
  • Ei CompendexScopusWJCI
  • EBSCOPж(AJ)JST
二维码

隧道建设(中英文) ›› 2024, Vol. 44 ›› Issue (12): 2469-2479.DOI: 10.3973/j.issn.2096-4498.2024.12.015

• 地质与勘察 • 上一篇    下一篇

基于钻进参数多变量特征挖掘的隧道围岩智能分级模型研究

赵思光1, 王明年2, *, 童建军2, 霍建勋1, 2, 夏覃永2, 易文豪2   

  1. (1. 中国铁路经济规划研究院有限公司技术标准所, 北京 100038; 2. 西南交通大学土木工程学院, 四川 成都 610031)

  • 出版日期:2024-12-20 发布日期:2025-01-11
  • 作者简介:赵思光(1994—),男,山东郓城人,2023年毕业于西南交通大学,桥梁与隧道工程专业,博士,工程师,主要从事铁路隧道标准和科研管理相关工作。E-mail: mt_guang@163.com。*通信作者: 王明年, E-mail: 19910622@163.com。

Intelligent Classification Model of Tunnel Surrounding Rocks Based on Drilling Parameter Multivariable Feature Mining

ZHAO Siguang1, WANG Mingnian2, *, TONG Jianjun2, HUO Jianxun1, 2, XIA Qinyong2, YI Wenhao2   

  1. (1. Technical Standards Institute of China Railway Economic and Planning Research Institute Co., Ltd., Beijing  100038, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
  • Online:2024-12-20 Published:2025-01-11

摘要: 为进一步提升基于钻进参数的围岩智能分级模型精度,综合考虑钻进参数间耦合影响作用、围岩地质非均一性等因素影响,从进给速度、推进压力、打击压力、回转压力等原始钻进参数特征变量出发,通过特征组合、统计方式,构建多变量的钻进参数特征体系并进行特征重要性评估。然后利用6种常见的机器学习方法进行围岩智能分级应用,并比较分析特征挖掘前后不同围岩级别样本类间距离及分级模型准确率。结果显示: 相比原始特征,多变量特征体系下不同围岩级别样本类间距离均值提升66.09%~85.41%,各模型分级总体准确率由75.5%~87.5%提高到 90.0%~92.5%,表明基于钻进参数多变量特征体系对围岩分级精度有很好的提升作用。

关键词: 隧道围岩分级, 钻进参数, 特征挖掘, 钻进能量指标, 机器学习

Abstract: To improve the accuracy of the intelligent classification model based on drilling parameters, the interaction between drilling parameters and the geological heterogeneity of the surrounding rock is taken into account. Key variables such as penetration velocity, feed pressure, hammer pressure, and rotation pressure are used as the original drilling parameter features. These features are then integrated into a multivariable drilling parameter characteristic system using feature combination and statistical methods. Six machine learning methods are applied for rock classification, with a comparative analysis conducted on the interclass distances of rock grade samples and the accuracy of the classification models, both before and after feature extraction. The results reveal significant improvements with the multivariable feature system. The average interclass distance of different rock grade samples increases by 66. 09% to 85.41%, while the overall accuracy of the classification models rises from 75.5%-87.5% to 90.0%92.5%. These findings demonstrate that the multivariable drilling parameter feature system can significantly improve the performance of rock classification.

Key words: tunnel surrounding rock classification, drilling parameters, feature mining, drilling energy index, machine learning