• 中国科学引文数据库(CSCD)核心期刊
  • 中文核心期刊中文科技核心期刊
  • Scopus RCCSE中国权威学术期刊
  • 美国EBSCO数据库 俄罗斯《文摘杂志》
  • 《日本科学技术振兴机构数据库(中国)》
二维码

隧道建设(中英文)

• • 上一篇    下一篇

基于改进KNN 算法的有限钻孔预测全域地质特征的方法

朱峻生,王 胜,柏 君,徐正宣,陈明浩,李昭淇,刘 鑫,张自豪,刘兴倚
  

  1. (1. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059;2. 中铁二院工程集
    团有限责任公司, 四川 成都 610031;3. 德阳市新源水利电力勘察设计有限公司, 四川 德阳 618000)
  • 出版日期:2023-11-03 发布日期:2023-11-03

An Improved KNN Algorithm Method Using Finite Boreholes for Predicting Full-area Geological Features#br#

ZHU Junsheng1, WANG Sheng1,*, BAI Jun1, XU Zhengxuan2, CHEN Minghao2, LI Zhaoqi1, LIU#br# Xin1, ZHANG Zihao1, LIU Xingyi3#br#   

  1. (1. State Key Laboratory of Geo-hazard Prevention and Gen-environment Protection, Chengdu University of
    Technology, Chengdu 610059, China; 2. China Railway Eryuan Engineering Group Co. Ltd, Chengdu 610031,
    China; 3. Water Conservancy and Electric Power Survey and Design Co. Ltd., Deyang 618000, China)
  • Online:2023-11-03 Published:2023-11-03

摘要: 为解决传统建模方法难以对原始钻孔数据进行深度挖掘和利用的问题,提出一种改进KNN(K-Nearest Neighbor)算
法,它是在原有的KNN 算法的基础上,通过实现k 值根据不同地层自动选取以及对原始地质资料的进一步利用,形成的一
套空间自适应插值拟合算法。将一铁路勘查工程数据作为数据源,导入该数据到改进KNN 算法模型中并运行,成功获得了
该地各地层的特征k 值,并实现了地质建模。通过对比实际建模以及实际的钻孔柱状图与KNN 改进前后预测的钻孔柱状图
发现,改进KNN 算法对于薄层的预测更加准确,总体准确率更高。并且通过机器学习指标的对比验证发现,相比于原始
KNN 算法以及其他常见分类算法,改进KNN 算法能够获得更好的地层预测效果,做到了“求全”与“求精”,能够较好
指导地下三维空间的预测。

关键词: 机器学习, K 邻近域算法, 全域地质特征预测, 地质建模, 钻孔数据

Abstract: To solve the problem that traditional modeling methods can’t deeply excavate the original drilling data
or make sufficient use of geological data, this paper proposes an improved KNN (K-Nearest Neighbor) algorithm.
It is a spatial adaptive interpolation fitting algorithm that is developed based on the original KNN algorithm. It
incorporates automatic selection of k-values based on different geological layers and utilizes the original geological
data for further analysis. Taking a railroad investigation project data as a data source, importing this data into the
improved KNN algorithm model and running it, we successfully obtained the characteristic k values of each stratum
in the site and accomplished the geological modeling. By comparing the actual borehole and the borehole predicted
网络首发时间:2023-10-19 18:21:55
网络首发地址:https://link.cnki.net/urlid/44.1745.U.20231019.1532.002
by original KNN and improved KNN, we found that the improved KNN algorithm is more accurate in predicting
the thin layers, and the overall accuracy is higher. Compared with the original KNN algorithm and other common
classification algorithms, the improved algorithm can obtain better stratum prediction results, especially for the thin
stratum, and obtain higher precision and accuracy, which can better guide the prediction of underground 3D space.

Key words: Machine Learning, K-Nearest Neighbor, Prediction of Global Geological Features, Geological
modeling,
Drilling data